HDU 6050

Funny Function

                                                                 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
                                                                                           Total Submission(s): 350    Accepted Submission(s): 149


Problem Description
Function  Fx,y satisfies:

For given integers N and M,calculate  Fm,1  modulo 1e9+7.
 

Input
There is one integer T in the first line.
The next T lines,each line includes two integers N and M .
1<=T<=10000,1<=N,M<2^63.
 

Output
For each given N and M,print the answer in a single line.
 

Sample Input
  
  
2 2 2 3 3
 

Sample Output
  
  
2 33
 

Source
 


解题思路:题意就不解释了,根据题目里给的式子去求,现场赛的时候两个队友一直用excel在那里找规律,最后找出了奇数和偶数时不同的递推式:

奇数:F(m,1)=F(m-1,1)*(2^n-1)-C(n/2),C(x)=C(x-1)*4+2

偶数:F(m,1)=(2^n-1)^(m-1)/3

然后矩阵快速幂搞一下就好了,奇数的时候最后答案要乘2


官方题解:

对于任意i>=1,当j>=3时,有 1 通过归纳法可以得到

  2 进而推导出3 通过矩阵快速幂求解


  1. #include <iostream>    
  2. #include <cstdio>    
  3. #include <cstring>    
  4. #include <string>    
  5. #include <algorithm>    
  6. #include <map>    
  7. #include <cmath>  
  8. #include <set>    
  9. #include <stack>    
  10. #include <queue>    
  11. #include <vector>    
  12. #include <bitset>    
  13. #include <functional>  
  14.   
  15. using namespace std;  
  16.   
  17. #define LL long long    
  18. const int INF = 0x3f3f3f3f;  
  19. const LL mod = 1000000007;  
  20.   
  21. LL n, m;  
  22.   
  23. struct Matrix  
  24. {  
  25.     LL v[9][9];  
  26.     Matrix()  
  27.     {  
  28.         memset(v, 0, sizeof v);  
  29.     }  
  30. } dan;  
  31.   
  32. Matrix mul(Matrix a, Matrix b, int d)  
  33. {  
  34.     Matrix ans;  
  35.     for (int i = 0; i < d; i++)  
  36.     {  
  37.         for (int j = 0; j < d; j++)  
  38.         {  
  39.             for (int k = 0; k < d; k++)  
  40.             {  
  41.                 ans.v[i][j] += (a.v[i][k] * b.v[k][j]) % mod;  
  42.                 ans.v[i][j] %= mod;  
  43.             }  
  44.         }  
  45.     }  
  46.     return ans;  
  47. }  
  48.   
  49. Matrix qpow(Matrix a, LL k, int d)  
  50. {  
  51.     Matrix ans = dan;  
  52.     while (k)  
  53.     {  
  54.         if (k & 1) ans = mul(ans, a, d);  
  55.         k >>= 1;  
  56.         a = mul(a, a, d);  
  57.     }  
  58.     return ans;  
  59. }  
  60.   
  61. LL qpow(LL x, LL y)  
  62. {  
  63.     LL ans = 1;  
  64.     while (y)  
  65.     {  
  66.         if (y & 1) ans *= x, ans %= mod;  
  67.         y >>= 1;  
  68.         x *= x;  
  69.         x %= mod;  
  70.     }  
  71.     return ans;  
  72. }  
  73.   
  74. LL extend_gcd(LL a, LL b, LL &x, LL &y)  
  75. {  
  76.     if (!b)  
  77.     {  
  78.         x = 1, y = 0;  
  79.         return a;  
  80.     }  
  81.     LL gcd = extend_gcd(b, a%b, x, y);  
  82.     LL tmp = x;  
  83.     x = y;  
  84.     y = tmp - (a / b)*y;  
  85.     return gcd;  
  86. }  
  87.   
  88. int main()  
  89. {  
  90.     int t;  
  91.     scanf("%d", &t);  
  92.     while (t--)  
  93.     {  
  94.         scanf("%lld%lld", &n, &m);  
  95.         if (m == 1) { printf("1\n"); continue; }  
  96.         Matrix a, ans;  
  97.         LL ans1 = (qpow(2, n) - 1 + mod) % mod;  
  98.         if (n % 2)  
  99.         {  
  100.             dan.v[0][0] = 0, dan.v[0][1] = 1;  
  101.             a.v[0][0] = 4, a.v[0][1] = 0, a.v[1][0] = 2, a.v[1][1] = 1;  
  102.             ans = qpow(a, n / 2, 2);  
  103.             dan.v[0][0] = 1, dan.v[0][1] = 1;  
  104.             a.v[0][0] = ans1, a.v[0][1] = 0, a.v[1][0] = -ans.v[0][0], a.v[1][1] = 1;  
  105.             ans = qpow(a, m - 1, 2);  
  106.             printf("%lld\n", (ans.v[0][0]+mod)%mod);  
  107.         }  
  108.         else  
  109.         {  
  110.             ans1 = qpow(ans1, m - 1);  
  111.             LL x, y;  
  112.             extend_gcd(3, mod, x, y);  
  113.             ans1 = ans1*x%mod;  
  114.             ans1 = (ans1 * 2) % mod;  
  115.             printf("%lld\n", ans1);  
  116.         }  
  117.     }  
  118.     return 0;  
  119. }  
#include <iostream>  
#include <cstdio>  
#include <cstring>  
#include <string>  
#include <algorithm>  
#include <map>  
#include <cmath>
#include <set>  
#include <stack>  
#include <queue>  
#include <vector>  
#include <bitset>  
#include <functional>

using namespace std;

#define LL long long  
const int INF = 0x3f3f3f3f;
const LL mod = 1000000007;

LL n, m;

struct Matrix
{
    LL v[9][9];
    Matrix()
    {
        memset(v, 0, sizeof v);
    }
} dan;

Matrix mul(Matrix a, Matrix b, int d)
{
    Matrix ans;
    for (int i = 0; i < d; i++)
    {
        for (int j = 0; j < d; j++)
        {
            for (int k = 0; k < d; k++)
            {
                ans.v[i][j] += (a.v[i][k] * b.v[k][j]) % mod;
                ans.v[i][j] %= mod;
            }
        }
    }
    return ans;
}

Matrix qpow(Matrix a, LL k, int d)
{
    Matrix ans = dan;
    while (k)
    {
        if (k & 1) ans = mul(ans, a, d);
        k >>= 1;
        a = mul(a, a, d);
    }
    return ans;
}

LL qpow(LL x, LL y)
{
    LL ans = 1;
    while (y)
    {
        if (y & 1) ans *= x, ans %= mod;
        y >>= 1;
        x *= x;
        x %= mod;
    }
    return ans;
}

LL extend_gcd(LL a, LL b, LL &x, LL &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    LL gcd = extend_gcd(b, a%b, x, y);
    LL tmp = x;
    x = y;
    y = tmp - (a / b)*y;
    return gcd;
}

int main()
{
    int t;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%lld%lld", &n, &m);
        if (m == 1) { printf("1\n"); continue; }
        Matrix a, ans;
        LL ans1 = (qpow(2, n) - 1 + mod) % mod;
        if (n % 2)
        {
            dan.v[0][0] = 0, dan.v[0][1] = 1;
            a.v[0][0] = 4, a.v[0][1] = 0, a.v[1][0] = 2, a.v[1][1] = 1;
            ans = qpow(a, n / 2, 2);
            dan.v[0][0] = 1, dan.v[0][1] = 1;
            a.v[0][0] = ans1, a.v[0][1] = 0, a.v[1][0] = -ans.v[0][0], a.v[1][1] = 1;
            ans = qpow(a, m - 1, 2);
            printf("%lld\n", (ans.v[0][0]+mod)%mod);
        }
        else
        {
            ans1 = qpow(ans1, m - 1);
            LL x, y;
            extend_gcd(3, mod, x, y);
            ans1 = ans1*x%mod;
            ans1 = (ans1 * 2) % mod;
            printf("%lld\n", ans1);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值