HDU-6050 Funny Function

2017 Multi-University Training Contest - Team 2 - 1006

HDU-6050 Funny Function


题意:

题目1
给出n, m
n代表  Fi,j   等于上一行从j开始往后n个元素的和
然后求第m行第一个元素  Fm,1  的值


思路:

先证

Fi,j=Fi,j1+2Fi,j2

这里用数学归纳法来证明

取 i = 2 ,n = 1

F2,j=F1,j 可以推出 F2,j=F2,j1+2F2,j2

假设 n = x 时 F2,j=F2,j1+2F2,j2 成立

j+2+x1k=jF1,k=j+1+x1k=j+1F1,k+2j+x1k=jF1,k     - - - - - -    ① 成立

当 n = x + 1 时

F2,j+2=j+2+xk=j+2F1,k=j+2+x1k=j+2F1,k+F1,j+2+x

F2,j+1=j+1+xk=j+1F1,k=j+1+x1k=j+1F1,k+F1,j+1+x

F2,j=j+xk=jF1,k=j+x1k=jF1,k+F1,j+x

由题目中 F1j=F1j1+2F1,j2 得出 F1j+2=F1j+1+2F1,j

又因为 ① 所以我们可以得出 F2j=F2j1+2F2,j2 n1 时成立

然后以此类推 i = 3, 4, 5, 6 ······ 时也成立

证毕

再证

jk=1Fi,k=Fi,j+1Fi,1 ( j 为偶数时)

jk=1Fi,k=Fi,j+1+Fi,1Fi,2 ( j 为奇数时)

由上一步的公式 Fi,j=Fi,j1+2Fi,j2


当 j 为偶数时

Fi,j+1=Fi,j+2Fi,j1

Fi,j1=Fi,j2+2Fi,j3

Fi,j3=Fi,j4+2Fi,j5

······

Fi,3=Fi,2+2Fi,1

我们把等号左右分别加起来得到

Fi,j+1=Fi,j+Fi,j1+Fi,j2++Fi,2+2Fi,1

            =Fi,j+Fi,j1+Fi,j2++Fi,2+Fi,1+Fi,1

            =jk=1Fi,j+Fi,1

移项得 jk=1Fi,k=Fi,j+1Fi,1 ( j 为偶数时)


当 j 为奇数时

Fi,j+1=Fi,j+2Fi,j1

Fi,j1=Fi,j2+2Fi,j3

Fi,j3=Fi,j4+2Fi,j5

······

Fi,4=Fi,3+2Fi,2

把等号左右分别加起来得

Fi,j+1=Fi,j+Fi,j1+Fi,j2++Fi,2+2Fi,2

等号两边分别加上 Fi,1

Fi,j+1+Fi,1=Fi,j+Fi,j1+Fi,j2++Fi,2+Fi,2+Fi,1+Fi,2

Fi,j+1+Fi,1=jk=1Fi,k+Fi,2

移项得 jk=1Fi,k=Fi,j+1+Fi,1Fi,2 ( j 为奇数时)

证毕

然后是

(Fm,1,Fm,2)=(F1,1,F1,2)(AnB0)m1 ( n 为偶数时)

(Fm,1,Fm,2)=(F1,1,F1,2)(AnB1)m1 ( n 为奇数时)

由第一步的递推公式 Fi,j=Fi,j1+2Fi,j2 来构造矩阵

(Fi,j1,Fi,j)=(Fi,j2,Fi,j1)(0121)

A=(0121)

(Fi,j,Fi,j+1)=(Fi,j1,Fi,j)A=(Fi,1,Fi,2)Aj1     - - - - - -    ①


当 n 为偶数时

由题目所给公式可得

Fi,1=nk=1Fi1,k         由第二步公式得

         =Fi1,n+1Fi1,1

Fi,2=n+1k=1Fi1,kFi1,1         由第二步公式得

         =Fi1,n+2+Fi1,1Fi1,2Fi1,1

         =Fi1,n+2Fi1,2

则可以得出

(Fi,1,Fi,2)=(Fi1,n+1Fi1,1,Fi1,n+2Fi1,2)

                    =(Fi1,n+1,Fi1,n+2)(Fi1,1,Fi1,2)          令①中 j = n + 1 带入得

                    =(Fi1,1,Fi1,2)An(Fi1,1,Fi1,2)(1001)

B0=(1001) 则可以得到

(Fi,1,Fi,2)=(Fi1,1,Fi1,2)(AnB0)

而这又是一个递推关系,我们就可以得到

(Fm,1,Fm,2)=(F1,1,F1,2)(AnB0)m1


当 n 为奇数时

Fi,1=nk=1Fi1,k         由第二步公式得

         =Fi1,n+1+Fi1,1Fi1,2

Fi,2=n+1k=1Fi1,kFi1,1         由第二步公式得

         =Fi1,n+2Fi1,1Fi1,1

         =Fi1,n+22Fi1,1

则可以得出

(Fi,1,Fi,2)=(Fi1,n+1+Fi1,1Fi1,2,Fi1,n+22Fi1,1)

                    =(Fi1,n+1,Fi1,n+2)(Fi1,1+Fi1,2,2Fi1,1)          令①中 j = n + 1 带入得

                    =(Fi1,1,Fi1,2)An(Fi1,1,Fi1,2)(1120)

B1=(1120) 则可以得到

(Fi,1,Fi,2)=(Fi1,1,Fi1,2)(AnB1)

而这又是一个递推关系,我们就可以得到

(Fm,1,Fm,2)=(F1,1,F1,2)(AnB1)m1

综上我们得出了两个公式

(Fm,1,Fm,2)=(F1,1,F1,2)(AnB0)m1 ( n 为偶数时)

(Fm,1,Fm,2)=(F1,1,F1,2)(AnB1)m1 ( n 为奇数时)

及公式中的 A,B0,B1 矩阵

A=(0121)      B0=(1001)      B1=(1120)

然后就可以愉快的使用矩阵快速幂求解了


代码:

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;

const int mod = 1e9 + 7;
struct S
{
    long long a[2][2];
};
S cheng(S a, S b)  // 矩阵乘法
{
    S temp;
    memset(temp.a, 0, sizeof(temp.a));
    for(int i = 0; i < 2; ++i)
    {
        for(int j = 0; j < 2; ++j)
        {
            for(int k = 0; k  < 2; ++k)
            {
                temp.a[i][j] += a.a[i][k] * b.a[k][j] % mod;
                temp.a[i][j] %= mod;
            }
        }
    }
    return temp;
}

int main()
{
    S a, b[2], f, temp;
    int t;
    long long n, m, n1;
    while(~scanf("%d", &t))
    {
        while(t--)
        {
            memset(a.a, 0, sizeof(a.a));  // 初始化 A B0 B1 矩阵
            memset(b[0].a, 0, sizeof(b[0].a));
            memset(b[1].a, 0, sizeof(b[1].a));
            memset(f.a, 0, sizeof(f.a));
            memset(temp.a, 0, sizeof(temp.a));
            a.a[0][1] = b[1].a[0][1] = 2;
            a.a[1][0] = a.a[1][1] = b[0].a[0][0] = b[0].a[1][1] = b[1].a[1][0]  = f.a[0][0] = f.a[0][1] = 1;
            b[1].a[0][0] = -1;
            temp.a[0][0] = temp.a[1][1] = 1;

            scanf("%lld%lld", &n, &m);
            n1 = n;
            while(n)  // temp保存A^n的值
            {
                if(n & 1)
                {
                    temp = cheng(temp, a);
                }
                n >>= 1;
                a = cheng(a, a);
            }

            for(int i = 0; i < 2; ++i)  // A 保存 A^n - B 的值
            {
                for(int j = 0; j < 2; ++j)
                {
                    a.a[i][j] = temp.a[i][j] - b[n1 % 2].a[i][j];
                }
            }

            memset(temp.a, 0, sizeof(temp.a));
            temp.a[0][0] = temp.a[1][1] = 1;
            --m;
            while(m)  // 求(A^n - B)^(m - 1)保存在temp中
            {
                if(m & 1)
                {
                    temp = cheng(temp, a);
                }
                m >>= 1;
                a = cheng(a, a);
            }

            f = cheng(f, temp); // 最后再用 {F(1,1) = 1 , F(1,2) = 1 } 乘上 (A^n - B)^(m - 1)
            cout << f.a[0][0] << endl;
        }
    }
    return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值