bzoj 4418: [Shoi2013]扇形面积并

该博客讨论了如何解决计算被至少K个扇形覆盖的面积问题。通过将扇形转化为矩形,利用树状数组和二分查找第K大的半径,可以求得答案。这种方法虽然有双重对数复杂度,但常数项可能较小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给定N个同心的扇形,求有多少面积,被至少K个扇形所覆盖。
题解:很明显,最后结果肯定是几个扇形的面积的和。因为扇形面积 =πR2×rl2m ,所以 ans=R2×(rl) 。那么扇形就变成了矩形(长方体?),大概就像这样:
这里写图片描述
纵坐标是R。
在相邻的两个端点间,用树状数组维护当前有哪些半径,二分求出第k大的,就可以求出答案了。虽然套了两个log,但好像常数比权值线段树小?
代码:

#include<bits/stdc++.h>
using namespace std;

int n,m,k,num=0,s[100010],rm=0,rf[100010];
struct hh
{
    int x,type,r;
}a[400010];
long long ans=0;

void ins(int x,int y,int r)
{
    if(x<y)
    {
        a[++num]={x,1,r};
        a[++num]={y,-1,r};
    }
    else if(x>y)
    {
        a[++num]={0,1,r};
        a[++num]={y,-1,r};
        a[++num]={x,1,r};
        a[++num]={m<<1,-1,r};
    }
}
int cmp(hh x,hh y)
{
    return x.x<y.x;
}
int lb(int x)
{
    return x&-x;
}
void add(int x,int y)
{
    for(int i=x;i<=rm;i+=lb(i))
    s[i]+=y;
}
int get(int x)
{
    int ans=0;
    for(int i=x;i>0;i-=lb(i))
    ans+=s[i];
    return ans;
}
int cmp2(int x,int y)
{
    return get(x)<y;
}
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1;i<=n;i++)
    {
        int r,x,y;
        scanf("%d%d%d",&r,&x,&y);
        x+=m;
        y+=m;
        ins(x,y,r);
        rm=max(rm,r);
    }
    for(int i=1;i<=rm;i++)
    rf[i]=i;
    sort(a+1,a+1+num,cmp);/*
    for(int i=1;i<=num;i++)
    printf("%d %d %d\n",a[i].x,a[i].type,a[i].r);*/
    for(int i=1;i<=num;)
    {
        int l=i,r=i;
        while(r<=num&&a[r].x==a[l].x)
        {
            add(a[r].r,a[r].type);
            r++;
        }
        int pp=get(rm);
        if(pp>=k)
        {
            long long oo=lower_bound(rf+1,rf+1+rm,pp-k+1,cmp2)-rf;
            ans+=oo*oo*(a[r].x-a[l].x);
//          printf("%lld\n",oo);
        }
        i=r;
//      printf("%d %d %lld\n",a[l].x,a[r].x,ans);
    }
    printf("%lld",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值