线性代数
文章平均质量分 91
herosunly
985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得多项AI顶级比赛的Top名次,其中包括阿里云天池安全恶意程序检测第一名,科大讯飞恶意软件分类挑战赛第一名,CCF信息分类比赛比赛第二名,CCF家族分类第四名,科大讯飞阿尔茨海默综合症预测挑战赛第四名,科大讯飞事件抽取挑战赛第七名,Datacon大数据安全分析比赛第五名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
展开
-
MIT线性代数笔记二十七讲 正定矩阵和最小值
1. 正定矩阵 Positive definite matrices原创 2020-06-02 17:43:26 · 456 阅读 · 0 评论 -
MIT线性代数笔记二十六讲 复矩阵和快速傅里叶变换
1. 复向量 Complex vectors2. 复矩阵 Complex matrices3. 傅里叶变换 Fourier transform4. 快速傅里叶变换 Fast Fourier transform原创 2020-03-25 09:51:05 · 389 阅读 · 0 评论 -
MIT线性代数笔记二十三讲 微分方程和e^{At}
1. 微分方程 Differential equations2. 矩阵指数函数 Matrix exponential e^{At}3. 二阶微分方程 Second order differential equations原创 2020-01-29 13:23:53 · 708 阅读 · 1 评论 -
MIT线性代数笔记二十讲 克莱姆法则、逆矩阵、体积
1. 逆矩阵的公式 Formula for A^{−1}A2. 克莱姆法则 Cramer’s Rule for x = A^{−1}b3. 体积 |det(A)|= volume of box原创 2019-11-10 17:05:59 · 495 阅读 · 0 评论 -
MIT线性代数笔记十九讲 行列式公式和代数余子式
1. 行列式公式 Formula for the determinant2. 代数余子式 Cofactor formula原创 2019-10-25 17:25:36 · 430 阅读 · 0 评论 -
MIT线性代数笔记一 行图像和列图像
曾经 若干年前,有一个年轻的男老师给我们讲线性代数。他讲课的声音比较小,坐到后面接近听不清的状态。在模糊的印象中,第一节课就讲如何通过行列式求解方程组(克莱姆法则)。再到后来的矩阵的各种运算(加法、乘法、求逆、转置)、初等行变换,直到最后的特征值和特征向量的求解。一路以来,除了运算就是运算,但却并不知道为什么要这样算。当时就提出一个小疑问,难度线性代数学的就是各种运算规则嘛?可惜的是,并没有深...原创 2019-03-20 21:02:54 · 14635 阅读 · 0 评论 -
MIT线性代数笔记二 矩阵消元
上节课讲的是如何从定性的方式(列向量)分析出对于任意的b\bold {b}b,使得Ax=b\bold {Ax} = \bold {b}Ax=b有解。这节课我们要具体讲解如何求Ax=b\bold {Ax} = \bold {b}Ax=b方程组的解。消元 Elimation 高斯消元法是计算机软件求解线形方程组最常用的方法。高斯消元法(Gauss elimination)就是通过对方程组中的...原创 2019-03-21 15:42:50 · 13884 阅读 · 4 评论 -
MIT线性代数笔记三 矩阵的乘法和逆矩阵
矩阵乘法 Matrix multiplication 我们通过四种方法讨论如何使矩阵 A 与 B 相乘得到矩阵 C。 其中 A 为mn(m行 n 列)矩阵,而 B 为 np 矩阵,则 C 为 m*p 矩阵,记 cijc_{ij}cij 为矩阵 C 中第 i 行第 j列的元素。1.1 标准方法(行乘以列) 矩阵乘法的标准计算方法是通过矩阵 A 第 i 行的行向量和矩阵 B 第 j 列的列...原创 2019-03-22 15:28:02 · 21701 阅读 · 0 评论 -
MIT线性代数笔记四 矩阵的LU分解
本节的主要目的是从矩阵的角度理解高斯消元法,最后找到所谓的 L LL矩阵,使得矩阵 A AA可以转变为上三角阵 U UU。即完成 L U LULU分解得到 A = L U A=LUA=LU。首先继续了解一些矩阵乘法和逆矩阵的相关内容。 在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求逆矩阵或计算行列式。原创 2019-03-23 20:26:08 · 23074 阅读 · 2 评论 -
MIT线性代数笔记五 转置、置换和空间
1. 置换 Permutations2. 转置 Transposes2.1 对称矩阵 Symmetric3. 向量空间 Vector spaces4. 子空间 Subspaces4.1 R^2R 2 的子空间4.2 R^3R 3 的子空间5. 列空间 Column spaces原创 2019-03-23 21:58:49 · 3797 阅读 · 1 评论 -
MIT线性代数笔记六 列空间和零空间
本节继续研究子空间,特别是矩阵的列空间(column space)和零空间(nullspace)。文章目录1. 向量空间和子空间(复习)2. 列空间 Column space3. 零空间 Nullspace原创 2019-03-24 11:26:07 · 24858 阅读 · 4 评论 -
MIT线性代数笔记七 列空间和零空间求解 Ax=0:主变量和特解
上节课具体定义了矩阵的列空间和零空间,那么如何求得这些向量空间呢?本节课是从定义转到算法。今天主要讲的是Ax=0Ax=0对应的零空间。简单来说,零空间是特解的线性组合。特解的个数等于自由变量的个数。1. 计算零空间 Nullspace2. 特解 Special solutions3. 行最简阶梯矩阵 Reduced row echelon form (rref)原创 2019-03-26 10:52:32 · 29075 阅读 · 2 评论 -
MIT线性代数笔记八 求解 Ax=b: 可解性与结构
1. 可解的条件 Solvability conditions on b2. 特解 A particular solution3. 通解 Complete solution3.1 与零空间进行线性组合 Combined with nullspace4. 秩 Rank4.1 列满秩4.2 行满秩4.3 满秩原创 2019-03-31 09:41:05 · 17448 阅读 · 2 评论 -
MIT线性代数笔记九 线性无关,基和维度
向量的线性无关意味着什么?如何用线性无关的概念来帮助我们描述包括零空间在内的子空间。 首先我们需要注意的是,线性无关是针对向量组而言的,而不是对矩阵而言的。 重要概念:线性无关(线性相关)、张成空间、基、维度。文章目录1. 复习2. 线性无关 Independence3. 张成空间 Span a space4. 基 Basis4.1 子空间的基 Basis for a subspace4.2 维度 Dimension4.3 列空间的基4.4 零空间的基原创 2019-05-21 16:00:17 · 15148 阅读 · 3 评论 -
MIT线性代数笔记十 四个基本子空间
1. 四个子空间 Four subspaces1.1 列空间 Column space C(A)1.2 零空间 Nullspace N(A)1.3 行空间 Row space C(AT)1.4 左零空间 Left nullspace N(AT)2. 基和维度 Basis& Dimension2.1 列空间2.2 零空间2.3 行空间2.4 左零空间3. 新向量空间 New vector space原创 2019-05-15 09:26:52 · 34593 阅读 · 1 评论 -
MIT线性代数笔记十一 矩阵空间、秩 1 矩阵和小世界图
1. 3*3 矩阵空间 3 by 3 matrices2. 微分方程 Differential equations3. 秩 1 矩阵 Rank one matrices4. 小世界图 Small world graphs原创 2019-07-30 14:43:10 · 494 阅读 · 1 评论 -
MIT线性代数笔记十二 图、网络、关联矩阵
本讲讨论线性代数在物理系统中的应用。1. 图和网络 Graphs & Networks2. 关联矩阵(Incidence matrices)原创 2019-08-10 12:08:23 · 633 阅读 · 1 评论 -
MIT线性代数笔记十四讲 正交向量与正交子空间
本节主要讲解正交(orthogonal)概念对于向量、基和子空间的意义。1. 正交向量 Orthogonal vectors2. 正交子空间 Orthogonal subspaces3. 零空间与行空间正交 Nullspace is perpendicular to row space4. 矩阵A^TA原创 2019-08-23 17:33:02 · 26949 阅读 · 2 评论 -
MIT线性代数笔记十五讲 子空间投影
1. 投影(射影)Projections2. 投影矩阵 Projections matrix3. 为什么要投影 Why Project4. 在高维投影 Projection in higher dimensions5. 最小二乘法原创 2019-08-26 10:19:36 · 24530 阅读 · 2 评论 -
MIT线性代数笔记十六讲 投影矩阵和最小二乘法
1. 投影 Projections2. 最小二乘法 Least Squares3. 矩阵A^TA原创 2019-09-08 07:58:53 · 1232 阅读 · 1 评论 -
MIT线性代数笔记十七讲 正交矩阵和施密特正交化
本节是“正交”部分的最后内容。Gram-Schmidt 过程可以将原空间的一组基转变为标准正交基。1. 正交向量 Orthonormal vectors2. 标准正交矩阵 Orthonormal matrix3. 标准正交列向量的优势 Orthonormal columns are good4. 施密特正交化 Gram-Schmidt原创 2019-09-25 14:56:31 · 1621 阅读 · 1 评论 -
MIT线性代数笔记十八讲 行列式及其性质
之前学习了大量长方形矩阵的性质,现在我们集中讨论方阵的性质,行列式和特征值将我们的又一个重点,求行列式则与特征值息息相关。1. 行列式 Determinants2. 性质 Properties原创 2019-09-27 10:53:53 · 504 阅读 · 1 评论 -
MIT线性代数笔记二十一讲 特征值和特征向量
1. 特征向量和特征值 Eigenvectors and eigenvalues2. 复数特征值 Complex eigenvalues3. 三角阵和重特征值 Triangular matrices and repeated eigenvalues原创 2019-11-14 16:19:06 · 611 阅读 · 1 评论 -
MIT线性代数笔记二十二讲 矩阵对角化和矩阵的幂
1. 对角化矩阵 Diagonalizing a matrix $S^{−1}AS$ = Λ2. 矩阵的幂 Powers of A3. 重特征值 Repeated eigenvalues4. 差分方程 Difference equations $u_{k+1}=Au_k$5. 斐波那契数列 Fibonacci sequence原创 2019-12-11 17:16:03 · 756 阅读 · 1 评论 -
MIT线性代数笔记二十四讲 马尔可夫矩阵和傅里叶级数
1. 马尔可夫矩阵 Markov matrices2. 傅里叶级数 Fourier series原创 2020-03-10 14:12:05 · 648 阅读 · 1 评论 -
MIT线性代数笔记二十五讲 对称矩阵和正定性
1. 对称矩阵 Symmetric matrices2. 实特征值 Real eigenvalues3. 正定矩阵 Positive definite matrices原创 2020-03-17 14:23:30 · 976 阅读 · 1 评论 -
MIT线性代数笔记二十八讲 相似矩阵和若尔当标准型
1.正定矩阵$A^TA$2. 相似矩阵 Similar matrices3. 特征值互不相同 Distinct eigenvalues4. 重特征值 Repeated eigenvalues5. 若尔当标准型 Jordan form原创 2020-06-03 22:13:39 · 2378 阅读 · 1 评论 -
MIT线性代数笔记二十九讲 奇异值分解
1. 用矩阵数学语言描述这一过程原创 2020-06-04 08:37:50 · 520 阅读 · 2 评论 -
矩阵求导总结
数据按照不同的维度,可以划分为标量、向量、矩阵。所以矩阵求导可以划分为三个组,其中每组三个,共九种情况:∂标量∂标量\frac{\partial 标量}{\partial标量}∂标量∂标量、∂标量∂向量\frac{\partial 标量}{\partial向量}∂向量∂标量、∂标量∂矩阵\frac{\partial 标量}{\partial矩阵}∂矩阵∂标量∂向量∂标量\fr...原创 2019-04-03 21:11:41 · 9828 阅读 · 4 评论 -
李宏毅 线性代数 Introduction
0. 个人杂谈 在学习过程中,最大的体会就是好的老师是让生命得以延续。本来能活N岁,但是好老师让学生在短时间内学到了很多的知识,就有很多的时间去接触更加精彩的生命。每个人的绝对时间寿命可能相差不大,但是相对的延续生命可能差距很大。所以我们要努力去延续自己的生命,让生活变得更加精彩。 一直很佩服李宏毅老师的讲课风格和深厚积淀,总能把很难的东西用很简单的话来表述,做到了信息量大而且传递效率高。...原创 2019-07-06 11:10:46 · 4849 阅读 · 2 评论 -
李宏毅 线性代数 线性方程组的系统
线性方程组对应的系统是线性系统。 我们要知道表达式中的每个符号代表的数学含义是什么。 如图所示,n个变量,m个方程组。第一个下标表示的是第m个方程组,第二个下标表示的是第n个变量。定义域、对应域、值域。其中值域是对应域的子集。在one-to-one中,值域中的每个值是不同的。在onto中,对应域和值域是相同的(这点没理解)。线性系统中的变换都是线性函数嘛?其实不是的,如微...原创 2019-07-06 11:49:45 · 10991 阅读 · 2 评论 -
李宏毅 线性代数 向量和矩阵
1. 向量1.1 基本定义 根据高中所学,向量就是一组数字,用符号vvv来表示。在课程中,默认使用的向量是列向量。1.2 成员 如果向量的成员个数小于4,则可以在低维空间进行可视化。1.3 向量的运算1.3.1 数乘 数乘运算相当于向量的伸缩。1.3.2 相加 向量的相加可以使用平行四边形法则或者三角形法则。1.4 向量集合 向量集合可以包括无穷多个向量。如...原创 2019-07-23 08:26:23 · 5571 阅读 · 2 评论