一、哈希集合法
用哈希表(unordered_set容器)存下我们从链表头往下走路径所见过的节点指针,当出现已经记录过的节点时,这个节点就是环的入口节点。
class Solution {
public:
ListNode* EntryNodeOfLoop(ListNode* pHead) {
unordered_set<ListNode*>s;
while(pHead)
{
if(s.count(pHead))
{
return pHead;
}
s.insert(pHead);
pHead=pHead->next;
}
return NULL;
}
};
注:也可以用set容器,但涉及到数据插入和查找,unordered_set的时间复杂度更低。
二、快慢指针
假设进入环之前的距离为x,环入口到相遇点的距离为y,相遇点到环入口的距离为z。并且快指针在环中走了n圈,慢指针在环中走了m圈,它们才相遇。
那么相遇时两个指针走得步数分别如下:
fast: x+n(y+z)+y
slow: x+m(y+z)+y
因为fast步数是slow的两倍,所以 fast=2slow
即: x+n(y+z)+y=2[ x+m(y+z)+y ] ;
化简等式得:
我们假设指针a从A向C遍历时,指针b从C点开始绕环遍历k圈(两个指针每次都走一步),那么两者都到达C点时所走的步数相同。而AC路途中的y 和 指针b绕环最后一圈抵达C点前的y 是公共路途,那么说明两个指针在B点就相遇了,并一起走到C点。
那么指针a与指针b首次相等的节点,即为环入口。
class Solution {
public:
ListNode* hasCycle(ListNode *pHead){
if(pHead==NULL || pHead->next==NULL){return NULL;}
ListNode* fast=pHead;
ListNode* slow=pHead;
while(fast && fast->next)
{
fast=fast->next->next;
slow=slow->next;
if(fast==slow)
{
return fast;
}
}
return NULL;
}
ListNode* EntryNodeOfLoop(ListNode* pHead) {
ListNode* a=hasCycle(pHead);
if(a==NULL){return NULL;}
ListNode* b=pHead;
while(a!=b)
{
a=a->next;
b=b->next;
}
return a;
}
};