关于数据挖掘的几个概念

整理的数据挖掘基本概念一书中的第一章的知识点

数据挖掘:从数据中提取有用模型的过程。其中,提出的模型可以是数据的汇总结果,不过一般情况下是数据中极端的特征所组成的集合。

邦弗朗尼原理:数据挖掘中考察数据的一个误区,指某个显著的特征如果是很有可能在随机数据中出现的话,那么根据这个显著的特征所获得的数据就具有不可依赖性。

TF.IDF:计算词频和词语重要度的一个计量指标

幂定律:类似于马太效应,可以表示为y=cxa,a为x的指数,此处a就是幂。这个定律在很多地方使用

比如pageRank,商品销量,包括TF.IDF词频统计中。

哈希,索引,这些也很重要,就不介绍了~~

ps:现阶段的数据挖掘中,机器学习和人工分析对于实际效果而言,并无明显优势

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值