问题:比如在对7万张图片进行训练以实现任意给定一张新的图片即可预测出图片的分类的例子中,当我们说训练模型时,我们实际是在训练什么?是训练神经元中最佳的权重吗?
百度 AI 回答:当你提到对7万张图片进行训练以实现任意给定一张新的图片即可预测出图片的分类时,你其实是在描述一个典型的监督学习任务,特别是分类任务。在这个任务中,你会使用深度学习(通常是通过神经网络,如卷积神经网络CNN)来训练一个模型。
当我们说“训练模型”时,我们实际上是在做以下几件事情:
初始化权重和偏置:神经网络的每一层都有一组权重(weights)和偏置(biases)。在训练开始之前,这些权重和偏置通常是随机初始化的,或者是通过某种预训练的方法初始化的。
前向传播:将训练集中的每张图片输入到神经网络中,通过网络中的每一层进行计算,最终得到网络对于该图片分类的预测。
计算损失:将网络的预测与真实标签(即图片的实际分类)进行比较,计算出一个损失值(loss)。损失函数衡量了模型预测与真实值之间的差异,我们的目标是最小化这个损失。
反向传播:根据计算出的损失,使用梯度下降或其变种算法(如Adam、RMSprop等)来更新网络的权重和偏置。这个过程涉及到计算损失函数关于网络参数的梯度,并根据这些梯度来更新参数。
迭代与优化:重复上述的前向传播、计算损失和反向传播的过程,直到模型的性能在验证集上不再显著提升,或者达到预设的训练轮次(epochs)。
因此,当我们说“训练模型”时,我们实际上是在训练神经元的权重和偏置,以使得模型能够对新的、未见过的图片做出准确的预测。通过不断地优化这些参数,我们希望能够找到一组最佳的权重和偏置,使得模型在分类任务上的性能达到最优。