环的进化图

学习了各种各样的乱七八糟的环,现在也弄不清楚到底是什么环是什么环了,如果还不来个整理,估计这些日子的努力就要白费了。


1.R(环):普通的环,{R,+}为加法交换群,{R,*}为乘法半群,乘法对加法满足分配律


2.D(整环):含么交换无零因子环


3.ND(Noether整环):含幺,每个理想都是有限生成


4.DD(Dedekind整环):ND,非零素理想是极大理想,整闭


5.UFD(唯一分解整环):又叫高斯整环,每个非单位元素可唯一分解为不可约元素的乘积


6.PID(主理想整环):环中的理想均为主理想


7.ED(欧几里德整环):能使用辗转相除法(该说法可能不准确)


8.DVD(离散赋值环):


6.F(域):{R-0,*}:构成交换群


 

r语言可以使用ggtree和ggtreeExtra包来绘制进化树。首先,你需要准备好树的数据和注释数据。然后,可以按照以下步骤进行绘: 1. 绘制树的主体,可以选择特殊的布局(如equal_angle),并为树枝添加一些分类颜色信息。 2. 添加外圈注释1,即标签,将标签放置在每个类别分支附近,并为背景颜色使用分类信息。 3. 添加外圈注释2,即点和文字,手动选择一些节点,在树枝顶端添加灰色的点和黑色的文字。 下面是一个示例代码,演示如何使用ggtree和ggtreeExtra包绘制进化树: ```R # 准备数据 tree_df <- read.tree("tree_file.txt") # 替换为你的树文件 phy_nodes <- c("A", "B", "C") # 替换为你选择的分支节点 label_node <- c("D", "E", "F") # 替换为你选择的节点 # 绘制树的主体 p <- ggtree(tree_df, aes(color = Form), layout = "equal_angle") + geom_treescale(-5, 7, fontsize = 3, linesize = 0.5, width = 1) + scale_color_manual(values = c("black", colors)) + coord_flip() + theme(legend.position = "none") # 添加外圈注释1 p1 <- p + geom_label_repel(data = subset(tree_df, node %in% phy_nodes), mapping = aes(x = x, y = y, label = Form, fill = Form), color = "black", alpha = 0.7) + scale_fill_manual(values = colors) # 添加外圈注释2 p2 <- p1 + geom_point(data = subset(tree_df, node %in% label_node), mapping = aes(x = x * 1.03, y = y * 1.03), color = "grey50") + geom_text_repel(data = subset(tree_df, node %in% label_node), mapping = aes(x = x * 1.05, y = y * 1.05, label = label), color = "black") # 显示绘制结果 print(p2) ``` 希望这个例子能帮助到你!如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值