[排序算法复习]堆排序的简单实现方法_简单版堆排序实现

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前在阿里

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上运维知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以点击这里获取!

* @param nums 待排序数组
*/
public int[] sortArray(int[] nums) {
int len = nums.length;
heapify(nums);

    while (len>0){
        swap(nums, 0, len---1);
        down(nums, 0, len);
    }
    return nums;
}

/\*\*

* 第一次最大堆排序
*/
void heapify(int[] nums) {
int len = nums.length;
// 这里为什么是从(len - 1) / 2开始? 因为除二之后是最后一个节点的父节点,而没有孩子的节点不需要下沉
for (int i = (len - 1) / 2; i >= 0; i–) {
down(nums, i, len);
}
}

/\*\*

* 下沉函数,将小的数字全部下沉
* @param parent 父节点
* @param end 子节点
*/
void down(int[] nums, int parent, int end) {
while (parent * 2 + 1 < end) {
// 这里child是parent的左节点
int child = parent * 2 + 1;
// 如果右节点比左节点要大,那么用child++来选择右节点
if (child + 1 < end && nums[child + 1] > nums[child]) {
child++;
}
//对比父节点和子节点,交换
if(nums[parent]<nums[child]) {
swap(nums, parent, child);
}
parent = child;
}
}

void swap(int[] nums, int a, int b) {
    int tmp = nums[b];
    nums[b] = nums[a];
    nums[a] = tmp;
}

}


* 无注释版:



class Solution {
public int[] sortArray(int[] nums) {
int len = nums.length;
heapify(nums);

    while (len>0){
        swap(nums, 0, len---1);
        down(nums, 0, len);
    }
    return nums;
}

void heapify(int[] nums) {
    int len = nums.length;
    for (int i = (len - 1) / 2; i >= 0; i--) {
        down(nums, i, len);
    }
}

void down(int[] nums, int parent, int end) {
    while (parent \* 2 + 1 < end) {
        int child = parent \* 2 + 1;
        if (child + 1 < end && nums[child + 1] > nums[child]) {
            child++;
        }
        if(nums[parent]<nums[child]) {
            swap(nums, parent, child);

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

66)**

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 14
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面是数据结构与算法的复习笔记: 一、数据结构 1. 数组:数组是一种线性数据结构,可以用于存储同一类型的元素。 2. 栈:栈是一种先进后出(Last In First Out)的数据结构,只能在栈顶进行插入和删除操作。 3. 队列:队列是一种先进先出(First In First Out)的数据结构,只能在队尾进行插入操作,在队头进行删除操作。 4. 链表:链表是一种动态数据结构,可以随时插入或删除元素。单向链表只能从头部开始遍历,而双向链表可以从头部或者尾部开始遍历。 5. 树:树是一种非线性数据结构,它由节点和边组成。每个节点有一个父节点和若干个子节点。 6. 堆:堆是一种特殊的树,它分为大根堆和小根堆。大根堆中父节点的值大于等于子节点的值,小根堆中父节点的值小于等于子节点的值。 7. 图:图是由节点和边组成的非线性数据结构,节点之间的连线称为边。图分为有向图和无向图。 二、算法 1. 排序:排序是将一组数据按照某个特定的顺序进行排列的过程。常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。 2. 查找:查找是在一组数据中找到特定元素的过程。常见的查找算法包括线性查找、二分查找、哈希查找等。 3. 字符串匹配:字符串匹配是在一个文本串中查找一个模式串的过程。常见的字符串匹配算法包括暴力匹配、KMP算法、Boyer-Moore算法、Rabin-Karp算法等。 4. 贪心算法:贪心算法是一种在每一步选择中都采取当前状态下最优解的策略。贪心算法常用于求解最小生成树、最短路径等问题。 5. 动态规划:动态规划是一种通过划分问题为子问题并解决子问题来求解原问题的方法。动态规划常用于求解最长公共子序列、背包问题等。 以上是数据结构和算法的复习笔记,希望对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值