【最长链】wikioi1814

19 篇文章 0 订阅

最长链 

现给出一棵N个结点二叉树,问这棵二叉树中最长链的长度为多少,保证了1号结点为二叉树的根。

输入描述

输入的第1行为包含了一个正整数N,为这棵二叉树的结点数,结点标号由1至N。

接下来N行,这N行中的第i行包含两个正整数l[i], r[i],表示了结点i的左儿子与右儿子编号。如果l[i]为0,表示结点i没有左儿子,同样地,如果r[i]为0则表示没有右儿子。

输出描述

输出包括1个正整数,为这棵二叉树的最长链长度。

样例输入

5

2 3

4 5

0 6

0 0

0 0

样例输出

4


做完之前那道题于是我找了一个最长链的题做

就是代码 依然很丑大哭

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

struct ty
{
    long t, next;
}edge[200010];
long head[100010];
bool v[100010];
long dist[100010];
long n, m, maxn, dian;
void insertedge(long x, long y, long k)
{
    edge[k].t = y;
    edge[k].next = head[x];
    head[x] = k;
}
void dfs(long x)
{
    long i = head[x];
    for (long i = head[x]; i != 0; i = edge[i].next)
        if (!v[edge[i].t])
        {
            v[edge[i].t] = true;
            dist[edge[i].t] = dist[x] + 1;
            dfs(edge[i].t);
            v[edge[i].t] = false;
        }
}
int main()
{
    freopen("1814.in", "r", stdin);
    scanf("%d", &n);
    m = 0;
    for (long i = 1; i <= n; i++)
    {
        long t1, t2;
        scanf("%d%d", &t1, &t2);
        if (t1 != 0)
        {
            insertedge(i, t1, ++m);
            insertedge(t1, i, ++m);
        }
        if (t2 != 0)
        {
            insertedge(i, t2, ++m);
            insertedge(t2, i, ++m);
        }
    }

    memset(dist, 0, sizeof(dist));
    memset(v, 0, sizeof(v));
    v[1] = true;
    dfs(1);
    maxn = 0, dian = 0;
    for (long i =1; i<=n ;i++)
    {
        if (dist[i] > maxn)
        {
            maxn = dist[i];
            dian = i;
        }
    }
    memset(dist, 0, sizeof(dist));
    memset(v, 0, sizeof(v));
    v[dian] = true;
    dfs(dian);
    maxn = 0, dian = 0;
    for (long i =1; i<=n ;i++)
    {
       // cout << dist[i]<<' ';
        if (dist[i] > maxn)
        {
            maxn = dist[i];
            dian = i;
        }
    }
    cout << maxn <<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值