【数位dp】hdu4389

33 篇文章 0 订阅
18 篇文章 0 订阅

X mod f(x)

Problem Description
Here is a function f(x):
   int f ( int x ) {
       if ( x == 0 ) return 0;
       return f ( x / 10 ) + x % 10;
   }
   Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 10 9), how many integer x that mod f(x) equal to 0.
Input
   The first line has an integer T (1 <= T <= 50), indicate the number of test cases.
   Each test case has two integers A, B.
Output
   For each test case, output only one line containing the case number and an integer indicated the number of x.
Sample Input
  
  
2 1 10 11 20
Sample Output
  
  
Case 1: 10 Case 2: 3 我看到网上好多题解都是部分打表,作为一个曾经的oi党,表示感动得泪流满面啊! 其实和之前那道求13的倍数有点像, 由于f(x)最大就是81,所以可以算对于1 - 81每一个数都求一下 f[pos][mod][x][sum] 表示前pos位数,除以x的余数是mod,各个位数和为sum的数的个数 其他的见代码…… 今天最开始没有初始化f数组,样例死活过不了,检查了半个多小时,orz,脑抽
#include <iostream>
#include <cstring>
#include <cstdio>
#include <stdlib.h>
using namespace std;
int f[11][82][82][82];
int bit[11];
int dp(int pos, int mod, int x, int sum, bool flag)
{ 
	
	if (pos == 0) return (x == sum && mod % sum == 0);
	if(flag && f[pos][mod][x][sum] != -1)return f[pos][mod][x][sum];
	int re = 0;
	int d = flag ? 9 : bit[pos]; 
   
	for (int i = 0; i <= d; i++)
	{
		int tmp = (mod * 10 + i) % x;
		re += dp(pos - 1, tmp , x, sum + i ,flag || i < d);
		
	}
	if (flag) f[pos][mod][x][sum] = re;
	
	return re;
	
}
int calc(int x)
{
	int len = 0;
	while(x)
	{
		bit[++len] = x % 10;
		x /= 10;
	}
	int sum = 0;
	for (int i = 1; i <= 81; i++)
	{
		sum += dp(len, 0, i, 0, 0);
	}
	return sum;
	
}

int main()
{
	int t, l , r;
	memset(f, -1, sizeof(f));
	scanf("%d", &t);
	
	for (int i = 1; i <= t; i++)
	{
		scanf("%d%d", &l, &r);
		printf("Case %d: %d\n", i, calc(r) - calc(l - 1));
	}	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值