A - DDL 的恐惧
题目:
ZJM 有 n 个作业,每个作业都有自己的 DDL,如果 ZJM 没有在 DDL 前做完这个作业,那么老师会扣掉这个作业的全部平时分。
所以 ZJM 想知道如何安排做作业的顺序,才能尽可能少扣一点分。
请你帮帮他吧!
Input
输入包含T个测试用例。输入的第一行是单个整数T,为测试用例的数量。
每个测试用例以一个正整数N开头(1<=N<=1000),表示作业的数量。
然后两行。第一行包含N个整数,表示DDL,下一行包含N个整数,表示扣的分。
Output
对于每个测试用例,您应该输出最小的总降低分数,每个测试用例一行。
Sample Input
3
3
3 3 3
10 5 1
3
1 3 1
6 2 3
7
1 4 6 4 2 4 3
3 2 1 7 6 5 4
Sample Output
0
3
5
Hint
上方有三组样例。
对于第一组样例,有三个作业它们的DDL均为第三天,ZJM每天做一个正好在DDL前全部做完,所以没有扣分,输出0。
对于第二组样例,有三个作业,它们的DDL分别为第一天,第三天、第一天。ZJM在第一天做了第一个作业,第二天做了第二个作业,共扣了3分,输出3。
思路:
利用贪心算法进行计算,从最大的ddl开始往前走,利用最大堆的特性,如果遇到了此处有ddl时,就把这个任务的价值加入最大堆,然后每走一步判断堆是否为空,如果不是,则删去堆中的最大元素,如果为空,则不管,进入下一个ddl,直到ddl为一,最后将堆里面的价值全部取出来累加,即为最终结果。
同样对于堆来说,我们需要定义一个cmp,来对堆进行排序。
代码:
#include
#include
#include
#include<string.h>
using namespace std;
struct node
{
int ddl,value;
bool operator<(const node x) const
{
return (this->value< x.value||(this->valuex.value&&this->ddl>x.ddl));
}
}a[1001];
int com(node a,node b)
{
return (a.ddl<b.ddl||(a.ddlb.ddl&&a.value<b.value));
}
int main()
{
int n,m,max,sum;
priority_queue q;
node now;
cin >> n;
while(n>0)
{
n–;
scanf("%d",&m);
memset(a,0,sizeof(a));
//max=0;
for(int i=0;i<m;i++)
{
scanf("%d",&a[i].ddl);
}
for(int i=0;i<m;i++)
{
scanf("%d",&a[i].value);
}
sort(a,a+m,com);
max=a[m-1].ddl;
//make_heap(&a[0],&a[m-1]);
for(int i=m-1;i>=0;i--)
{
if(a[i].ddl==max)
{
q.push(a[i]);
//cout << q.top().value << endl;
//cout << "first" << endl;
continue;
}
if(q.empty())
{
i++;
max--;
//cout <<"second" << endl;
continue;
}
if(!q.empty()&&a[i].ddl!=max)
{
//cout << q.top().value << endl;
q.pop();
i++;
}
max--;
}
for(int i=0;i<max;i++)
{
q.pop();
}
sum=0;
while(!q.empty())
{
now=q.top();q.pop();
sum+=now.value;
}
cout << sum << endl;
}
}
B - 四个数列
题目:
ZJM 有四个数列 A,B,C,D,每个数列都有 n 个数字。ZJM 从每个数列中各取出一个数,他想知道有多少种方案使得 4 个数的和为 0。
当一个数列中有多个相同的数字的时候,把它们当做不同的数对待。
请你帮帮他吧!
Input
第一行:n(代表数列中数字的个数) (1≤n≤4000)
接下来的 n 行中,第 i 行有四个数字,分别表示数列 A,B,C,D 中的第 i 个数字(数字不超过 2 的 28 次方)
Output
输出不同组合的个数。
Sample Input
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5
Hint
样例解释: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
思路:
如果直接用暴力算法,很简单,四个for循环就可以解决,
但明显会超时,于是可以将数组两两相加,然后将新得到的其中的一个数组中的每个元素在另一个数组(事先进行排序)中进行二分查找,由o(n)降到了o(logn),从而满足最终复杂度。
在二分查找过程中,因为会有不同的两个值相加得到同样的一个值,而这个值,正是我们要找的那个数,故我们需要在那个数的左右两边再次进行查找。直到到达边界或者没有这个值为止。而每得到一个值,就相应count++,最终输出count即为结果。
代码:
#include
#include
using namespace std;
int countt=0,n;
int e[16000009];
void find(int x)
{
int l=1,r=nn,i=1;
while(l<=r)
{
int mid=(l+r)/2;
if(e[mid]==x)
{countt++;
while(1)
{
if(e[mid-i]==x&&(mid-i>=1))
{countt++;
}
if(e[mid+i]==x&&(mid+i<=nn))
countt++;
if((e[mid-i]!=x||(mid-i<1))&&e[mid+i]!=x||(mid+i>n*n))
break;
i++;
}
break;
}
else if(e[mid]>x) r=mid-1;
else l=mid+1;
}
//cout << countt << endl;
}
int main()
{
int k=1;
int a[4001];
int b[4001];
int c[4001];
int d[4001];
cin >> n;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
e[k++]=a[i]+b[j];
}
}
sort(e+1,e+nn+1);
/
for(int i=1;i<=n*n;i++)
{
cout << e[i] << endl;
}
*/
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
//cout << i <<“i:”<< endl;
find(-c[i]-d[j]);
}
}
cout << countt << endl;
}
C - TT 的神秘礼物
TT 是一位重度爱猫人士,每日沉溺于 B 站上的猫咪频道。
有一天,TT 的好友 ZJM 决定交给 TT 一个难题,如果 TT 能够解决这个难题,ZJM 就会买一只可爱猫咪送给 TT。
任务内容是,给定一个 N 个数的数组 cat[i],并用这个数组生成一个新数组 ans[i]。新数组定义为对于任意的 i, j 且 i != j,均有 ans[] = abs(cat[i] - cat[j]),1 <= i < j <= N。试求出这个新数组的中位数,中位数即为排序之后 (len+1)/2 位置对应的数字,’/’ 为下取整。
TT 非常想得到那只可爱的猫咪,你能帮帮他吗?
Input
多组输入,每次输入一个 N,表示有 N 个数,之后输入一个长度为 N 的序列 cat, cat[i] <= 1e9 , 3 <= n <= 1e5
Output
输出新数组 ans 的中位数
Sample Input
4
1 3 2 4
3
1 10 2
Sample Output
1
8
思路:
如果直接暴力做法,枚举i, j将数列ans计算出来,然后算中位数 复杂度为𝑂(𝑛2),不符合题意。
于是想到用二分进行判断,利用二分判断p的名次,并将其与中位数的名次进行比较,如果P从小到大排的名次比中位数小,说明什么? P比中位数要小
如果P从小到大排的名次比中位数大,说明什么? P比中位数要大
如果P从小到大排的名次等于中位数,说明什么? P就是中位数
结论:满足单调性,可以二分P!
于是我们可以将X从小到大排列可以去绝对值。
那么计算𝑋𝑗 − 𝑋𝑖 ≤ 𝑃的二元组对数即可。
移项可得𝑋𝑗 ≤ 𝑋𝑖 + 𝑃, 𝑖 <𝑗
枚举下标i然后计算满足条件的下标j的个数
在此基础上,我们可以查找比p小的个数,首先对原数组进行排序后,找到中位数可能取值的最大与最小区间,分别赋值r,l,然后计算出每一次mid的名次,然后通过比较mid的名次与中位数名次的大小,来进行二分。
当循环结束时,我们得到的r值即为中位数的值
代码:
#include
#include
#include<string.h>
#include<math.h>
using namespace std;
int a[100001];
int n,x;
int find(int len)
{
int l=0,r=a[n-1]-a[0];
//cout << r << endl;
while(l<=r)
{
int mid=(l+r)/2,sum1=0;
for(int i=0;i<n;i++)
{
sum1+=lower_bound(a,a+n,a[i]+mid)-a;
}
if((len-nn+sum1)>=(len+1)/2) r=mid-1;
else l=mid+1;
}
return r;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
//memset(a,0,sizeof(a));
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
sort(a,a+n);
x=find(n(n-1)/2);
cout << x << endl;
}
}