A题
A
实验室里原先有一台电脑(编号为1),最近氪金带师咕咕东又为实验室购置了N-1台电脑,编号为2到N。每台电脑都用网线连接到一台先前安装的电脑上。但是咕咕东担心网速太慢,他希望知道第i台电脑到其他电脑的最大网线长度,但是可怜的咕咕东在不久前刚刚遭受了宇宙射线的降智打击,请你帮帮他。
提示: 样例输入对应这个图,从这个图中你可以看出,距离1号电脑最远的电脑是4号电脑,他们之间的距离是3。 4号电脑与5号电脑都是距离2号电脑最远的点,故其答案是2。5号电脑距离3号电脑最远,故对于3号电脑来说它的答案是3。同样的我们可以计算出4号电脑和5号电脑的答案是4.
Input
输入文件包含多组测试数据。对于每组测试数据,第一行一个整数N (N<=10000),接下来有N-1行,每一行两个数,对于第i行的两个数,它们表示与i号电脑连接的电脑编号以及它们之间网线的长度。网线的总长度不会超过10^9,每个数之间用一个空格隔开。
Output
对于每组测试数据输出N行,第i行表示i号电脑的答案 (1<=i<=N).
Sample Input
5
1 1
2 1
3 1
1 1
Sample Output
3
2
3
4
4
思路:
首先根据一个起点来判断与这个起点最远的那个端点。然后再根据最远的端点求出另一个端点,即可得到此树的直径,然后从两个端点出发,遍历树中的每个节点,我用的是两个节点,一个用来辨识自己与自己当前距离端点的距离,另一个节点表示的是与此节点相连的节点,而且表示出他们的距离,然后利用队列进行bfs遍历即可,可用visit数组进行剪枝,但切记每轮bfs过后都要清0.
代码:
#include<iostream>
#include<list>
#include<queue>
#include<string.h>
using namespace std;
struct node
{
int v,w;//与其相连的点,之间的weight。已有的距离。
node(int tv,int tw)
{
v=tv;
w=tw;
}
node(){
}
};
struct nod
{
int v,d;
nod(int tv,int td)
{
v=tv;
d=td;
}
nod()
{
}
};
list<node> a[10010];
int vis[10010];
int dis[10010];
int n,v,p,q;
int w;
nod ans(1,0);
nod bfs(nod x)
{
queue<nod> q;
q.push(x);
vis[x.v]=1;
nod now;
list<node>::iterator it;
while(!q.empty())
{
now=q.front();q.pop();
//cout << now.v << endl;
it=a[now.v].begin();
while(it!=a[now.v].end())
{
if(!vis[(*it).v])
{
//cout << (*it).v <<endl;
q.push(nod((*it).v,now.d+(*it).w));
vis[(*it).v]=1;
if(ans.d<now.d+(*it).w)
{
ans.d=now.d+(*it).w;
ans.v=(*it).v;
}
}
++it;
}
}
return ans;
}//每个节点多一个表示距离的变量。
void bfss(int g)
{
queue<nod> q;
q.push(nod(g,0));
vis[g]=1;
nod now;
list<node>::iterator it;
while(!q.empty())
{
now=q.front();q.pop();
it=a[now.v].begin();
while(it!=a[now.v].end())
{
if(!vis[(*it).v])
{
q.push(nod((*it).v,now.d+(*it).w));
if(dis[(*it).v]<now.d+(*it).w)
dis[(*it).v]=now.d+(*it).w;
vis[(*it).v]=1;
}
++it;
}
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<10010;i++)
a[i].clear();
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
for(int i=2;i<=n;i++)
{
cin >> v >> w;
a[i].push_back(node(v,w));
a[v].push_back(node(i,w));
}
nod an(1,0);
ans.d=0;
ans.v=1;
p=bfs(an).v;
memset(vis,0,sizeof(vis));
ans.d=0;
ans.v=1;
q=bfs(nod(p,0)).v;
//cout << p << " " << q << endl;
memset(vis,0,sizeof(vis));
bfss(p);
memset(vis,0,sizeof(vis));
bfss(q);
for(int i=1;i<=n;i++)
{
cout << dis[i] << endl;
}
}
}
B题
B:
新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19),简称“新冠肺炎”,是指2019新型冠状病毒感染导致的肺炎。
如果一个感染者走入一个群体,那么这个群体需要被隔离!
小A同学被确诊为新冠感染,并且没有戴口罩!!!!!!
危!!!
时间紧迫!!!!
需要尽快找到所有和小A同学直接或者间接接触过的同学,将他们隔离,防止更大范围的扩散。
众所周知,学生的交际可能是分小团体的,一位学生可能同时参与多个小团体内。
请你编写程序解决!戴口罩!!
Input
多组数据,对于每组测试数据:
第一行为两个整数n和m(n = m = 0表示输入结束,不需要处理),n是学生的数量,m是学生群体的数量。0 < n <= 3e4 , 0 <= m <= 5e2
学生编号为0~n-1
小A编号为0
随后,m行,每行有一个整数num即小团体人员数量。随后有num个整数代表这个小团体的学生。
Output
输出要隔离的人数,每组数据的答案输出占一行
Sample Input
100 4
2 1 2
5 10 13 11 12 14
2 0 1
2 99 2
200 2
1 5
5 1 2 3 4 5
1 0
0 0
Sample Output
4
1
1
思路:
根据所给的数据进行并查集的整合,需要注意的是,多了一个rnk数组,赋初值1,用来记录每个集合包含的元素个数,最后通过find函数先找到根节点,然后再找到这个集合会包括多少个元素。即为最终答案。
代码:
#include<iostream>
using namespace std;
int p[30010];
int rnk[30010];
int find(int x)
{
return p[x]==x?x:p[x]=find(p[x]);
}
bool unite(int x,int y)
{
x=find(x);y=find(y);
if(x==y) return false;
p[x]=y;
rnk[y]+=rnk[x];
return true;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF&&!(n==0&&m==0))
{
for(int i=0;i<n;i++)
{p[i]=i;rnk[i]=1;
}
while(m--)
{
int num,last=-1;
cin >> num;
while(num--)
{
int p;cin >> p;
if(last!=-1)
unite(p,last);
last=p;
}
}
cout << rnk[find(0)] << endl;
}
}
C题与D题
C:
东东在老家农村无聊,想种田。农田有 n 块,编号从 1~n。种田要灌氵
众所周知东东是一个魔法师,他可以消耗一定的 MP 在一块田上施展魔法,使得黄河之水天上来。他也可以消耗一定的 MP 在两块田的渠上建立传送门,使得这块田引用那块有水的田的水。 (1<=n<=3e2)
黄河之水天上来的消耗是 Wi,i 是农田编号 (1<=Wi<=1e5)
建立传送门的消耗是 Pij,i、j 是农田编号 (1<= Pij <=1e5, Pij = Pji, Pii =0)
东东为所有的田灌氵的最小消耗
Input
第1行:一个数n
第2行到第n+1行:数wi
第n+2行到第2n+1行:矩阵即pij矩阵
Output
东东最小消耗的MP值
Example
Input
4
5
4
4
3
0 2 2 2
2 0 3 3
2 3 0 4
2 3 4 0
Output
9
思路:
已知每块田既可以灌溉,又可以建立联系,则通过加一个原点,使其与所有点都连通,然后找到最小生成树即可,kruskal算法思想即为依次将边权最小的边依次加入树中,并且不能构成圈,这局要用到并查集算法,然后每加入一次边,就权值累计起来,最终即为要求结果。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int maxn = 3e2+10;
using namespace std;
int p[310];
int tot;
int n;
void init(int n){for(int i = 0;i<=n;i++) p[i] = i;}
struct Edge{
int u,v,w;
bool operator<(const Edge& a) const
{
return w < a.w;
}
}Es[maxn*maxn];
int find(int x)
{
return p[x]==x?x:find(p[x]);
}
bool unite(int x,int y)
{
x=find(x),y=find(y);
if(x==y) return false;
p[x]=y;
return true;
}
int kruskal()
{
init(n);
sort(Es,Es+tot);
int cnt=0,ans=0;
for(int i=0;i<tot;i++)
{
if(unite(Es[i].u,Es[i].v))
{
ans+=Es[i].w;
if(++cnt==n) return ans;
}
}
return -1;
}//最小生成树,加入最小边权,利用并查集判断是否构成圈。
int main()
{
cin >> n;
tot=0;
for(int i=1;i<=n;i++)
{
cin >> Es[tot].w;
Es[tot].u=0,Es[tot].v=i,tot++;//0作为原点。
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cin >> Es[tot].w;
if(i!=j)
{Es[tot].u=i,Es[tot].v=j,tot++;
}
}
}
printf("%d",kruskal());
return 0;
}
D:
csp2018124
思路:
与C题大同小异,目的是在所有生成树中,其最大的边权要最小,其实就是最小生成树,依次取出最小的权值,在判断是否构成圈时,注意rnk数组的妙用,我们可以将高度小的根节点挂在高度高的根节点,虽然unite并没有优化,但find函数会更加快的找的自己的跟根节点,然后取出边权最大值,最后输出即可。
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
struct edge
{
int u,v,w;
bool operator<(const edge &a) const
{
return w<a.w;
}
}e[100010];
int n,m,res;
int p[50010];
int rnk[50010];
void init(int n)
{
for(int i=1;i<=m;i++)
p[i]=i;
}
int find(int x)
{
return p[x]==x?x:p[x]=find(p[x]);
}
bool unite(int x,int y)
{
x=find(x);y=find(y);
if(x==y) return false;
if(rnk[x]<rnk[y])
{p[x]=y;rnk[y]+=rnk[x];
}
else
{p[y]=x;rnk[x]+=rnk[y];
}
return true;
}
int kruskal()
{
sort(e+1,e+1+m);
int cnt=0,ans=0;
for(int i=1;i<=m;i++)
{
if(unite(e[i].u,e[i].v))
{
ans=max(ans,e[i].w);
if(++cnt==n-1) break;
}
}
return cnt==n-1?ans:-1;
}
int main()
{
memset(rnk,0,sizeof(rnk));
cin >> n >> m >> res;
init(n);
for(int i=1;i<=m;i++)
cin >> e[i].u >> e[i].v >> e[i].w;
cout << kruskal() << endl;
return 0;
}