《数学建模与数学实验》第5版 数据的统计描述 习题8.7


参考教材:《数学建模与教学实验》第5版
提示:以下是本篇文章正文内容,来自参考教材课后习题。

1. 某校60名学生的一次考试成绩如下:

937583939185848277767795948991
888683968179977875676968848381
756685709484838280787473767086
769089716686738094797877635355

(1).计算计算均值、标准差、极差、偏度、峰度,画出直方图;

matlab求解:

clear;clc
% 成绩输入
x=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55];

mean = mean(x) % 均值
std = std(x) % 标准差
range = range(x) % 极差
skewness = skewness(x) % 偏度
kurtosis = kurtosis(x) %峰度
histogram(x,10) % 直方图

结果:
在这里插入图片描述
均值为:80.1;标准差:9.7106;极差:44;偏度:-0.4682;峰度:3.1529

直方图:
在这里插入图片描述

(2).检验分布的正态性;

normplot(x) % 概率分布图

在这里插入图片描述
从上述图可得符合正态分布。

(3).若检验符合正态分布,估计正态分布的参数并检验参数。

% 参数估计
[muhat,sigmahat,muci,sigmaci] = normfit(x)
%假设检验t检验
[h,sig,ci] = ttest(x,80.1,0.05)

估计出这60名同学成绩正态分布的均值为80.1,标准差为9.7106,95%置信区间为[ 77.5915,82.6085];
在这里插入图片描述

检验结果:
布尔变量h=0, 表示不拒绝零假设,说明提出的假设寿命均值594是合理的。
95%的置信区间为[77.5915,82.6085], 它完全包括80.1, 且精度比较高。
sig值为1, 远超过0.5, 不能拒绝零假设。

2. 科学上的重大发现往往是由年轻人作出的,下面列出了自16世纪初期至20世纪早期的十二项重大发现及其发现者、发现年份和发现者当时年龄。

重大发现发现者发现年份年龄
地球绕太阳运转哥白尼151340
望远镜、天文学的基本定理伽利略160036
运动原理、重力、微积分牛顿166523
点的本质富兰克林174640
燃烧是与氧气联系着的拉瓦锡177431
地球是渐进过程演化成的莱尔183033
自然选择控制演化的证据达尔文185849
光的场方程麦克斯韦186433
放射性居里189831
量子论普朗克190042
狭义相对论爱因斯坦190526
量子论的数学基础薛定谔192639

设样本来自正态分布,求发现者当时的平均年龄的置信水平为95%的单侧置信上限。

% 年龄
x = [40 36 23 40 31 33 49 33 37 42 26 39];
% 参数估计
[muhat,sigmahat,muci,sigmaci] = normfit(x)

在这里插入图片描述
发现者的平均年龄的置信水平为95%的置信上限为40.2763.

3. 设某产品的生产工艺发生了改变,在改变前后分别测得了若干产品的技术指标。

其结果为:
改变前:21.6 22.8 22.1 21.2 20.5 21.9 21.4
改变后:24.1 23.8 24.7 24.0 23.7 24.3 24.5
假设该产品的技术指标服从正态分布,方差未知且在工艺改变前后不变。试估计工艺改变后,该技术指标的置信水平为95%的平均值的变化范围。

x = [21.6 22.8 22.1 21.2 20.5 21.9 21.4];
% 假设检验
mean(x)
[h,sig,ci] = ztest(x,mean(x),std(x),0.05)

在这里插入图片描述

检验结果:
布尔变量h=0, 表示不拒绝零假设,说明提出的假设寿命均值21.6429是合理的。
95%的置信区间为[21.1038,22.1819], 它完全包括21.6429, 精度比较高。
sig值为1, 远超过0.5, 不能拒绝零假设。

4. 正常人的脉搏平均为72次/秒,某医生测得10例慢性中毒者的脉搏为(单位:次/秒)

54 67 65 68 78 70 66 70 69 67
设中毒者的脉搏服从正态分布,问中毒者和正常人的脉搏有无显著差异(a=0.05)

解:作出假设:mean=72,方差未知:

x = [54 67 65 68 78 70 66 70 69 67];
% 方差未知检验
[h,sig,ci] = ttest(x,72,0.05)

在这里插入图片描述
检验结果:
h=1,表示拒绝原假设,说明有显著性差异。

5. 从某电工器材厂生产的一批保险丝中抽取10根,测试其融化时间,得到数据如下:

42 65 75 78 71 59 57 68 55 54
设这批保险丝的融化时间服从正态分布,检验总体方差是否等于144?

x = [42 65 75 78 71 59 57 68 55 54];
normplot(x)
[muhat,sigmahat,muci,sigmaci] = normfit(x)

在这里插入图片描述
在这里插入图片描述
总体方差不等于 1 2 2 12^2 122

6. 甲、乙两台机床生产同一型号的滚珠,从这两台机床生产的滚珠中分别抽取若干个样品,测得滚珠的直径(单位:mm)如下:

甲机床:15.0 14.7 15.2 15.4 14.8 15.1 15.2 15.0
乙机床:15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.9
设两台机床生产的滚珠的直径都服从正态分布,检验它们是否服从相同的正态分布(a=0.05)

clear;clc
x = [15.0 14.7 15.2 15.4 14.8 15.1 15.2 15.0];
y = [15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.9];
% 两个总体均值的假设t检验
a = mean(x)
b = mean(y)
[h,sig,ci] = ttest2(x,y,0.05)

在这里插入图片描述
可知h=0,两个总体服从相同的正态分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值