本篇是学习了异步社区的《趣学算法(第2版)》 第一章之后总结的。
对算法的理解:
计算机虽然可以高效的进行运算,但是有很多问题拼的不是算力,而是策略。如果没有策略的去计算,那再强的运算能力也只能称为“蛮力”。策略就是帮助我们如何用更少的计算步骤、更快的速度去运算出结果。换言之,策略就是你设计算法的思路,目的只有一个就是:快人一步。
计算机不同于人脑,人脑面对问题可以先去“观察”、“分析”,然后把复杂转化成简单问题(跟数学题一样,算法就是简便的解题思路)。目前在绝大多数领域计算机还不具备这个功能,离开了人脑,计算机还只是一个人的使用工具罢了。
算法有两个衡量标准:
- 时间长短(时间复杂度)
- 占用内存大小(空间复杂度)
先展望一下学习历程:
算法学习是一个循序渐进的过程,经常训练解题能力,逐步积累解题方法策略,最后内化成自己的知识,灵活运用去应对新的问题。
“初极狭,才通人。复行数十步,豁然开朗。”,挺喜欢这句话😁
算法知识点
- 高斯算法(倒序相加)
- 数列求和
算法题目
求: S n = 1 + 2 + 2 2 + 2 3 + . . . + 2 63 = S_n = 1 + 2 + 2^2 + 2^3 + ... + 2^{63}= Sn=1+2+22+23+...+263=
做题思路
方法一
公式法
如果还记得高中数学知识,不难发现,这是一个等比数列求和问题, a 1 = 1 ,公比 q = 2 , n = 64 a_1 = 1,公比q = 2,n = 64 a1=1,公比q=2,n=64
等比数列求和公式: S n = a 1 ∗ 1 − q n 1 − q , ( q ≠ 1 ) S_n = a_1 * \frac{1 - q^n}{1 - q} ,(q ≠ 1) Sn=a1∗1−q1−qn,(q=1)
本文暂不讲解公式推导过程
代入公式,上面的式子 = 1 ∗ 1 − 2 64 1 − 2 = 2 64 − 1 1 * \frac{1 - 2^{64}}{1 - 2} = 2^{64} - 1 1∗1−21−264=264−1,从而转化问题,解题
方法二
忘记方法叫什么名字了,主要原理就是销项
根据原式,等号两边同时乘以2,得式子② 2 S n = 2 + 2 2 + 2 3 + . . . + 2 63 + 2 64 2S_n = 2 + 2^2 + 2^3 + ... + 2^{63} + 2^{64} 2Sn=2+22+23+...+263+264
用式子② - 原式 = S n = 2 64 − 1 S_n = 2^{64} - 1 Sn=264−1
总结
通过上面一个算法小例子,又勾起了我对数学的兴趣。算法跟数学是息息相关的,平常也要复习一下数学知识,相信也会有所帮助的。
我是 甜点cc
热爱前端,也喜欢专研各种跟本职工作关系不大的技术,技术、产品兴趣广泛且浓厚,等待着一个创业机会。本号主要致力于分享个人经验总结,希望可以给一小部分人一些微小帮助。
希望能和大家一起努力营造一个良好的学习氛围,为了个人和家庭、为了我国的互联网物联网技术、数字化转型、数字经济发展做一点点贡献。数风流人物还看中国、看今朝、看你我。