本文使用go语言编写
1、计算表达式
输入一个表达式,返回计算结果。比如: 3 + 2 * 6 - 2 = 13
说明:会按照运算符的优先级自动进行正确的运算
2、算法设计思路
-
创建两个栈,numStack, operStack
-
numStack存放数,operStack操作符
-
index:=0,
-
exp计算表达式,是一个字符串
-
如果扫描发现是一个数字,则直接入numstack
-
如果发现是一个运算符。
(1)如果operStack是一个空栈,直接入栈
(2)如果operStack不是一个空栈
(2.1)如果发现 opertStack 栈顶的运算符的优先级大于等于当前准备入栈的运算符的优先级,就从符号栈pop出,并从数栈也pop两个数,进行运算,运算后的结果再重新入栈到数栈,符号再入符号栈
(2.2)否则,运算符就直接入栈
-
如果扫描表达式完毕,依次从符号栈取出符号,然后从数栈取出两个数,运算后的结果,入数栈,直到符号栈为空
2.1、关键操作示意图
图一:
上面示意图中运算 “2x6” 之后,把运算结果“12”重新push到数栈,然后再把操作符“-”push到符号栈,请看下图👇
图二:
2.2、其它需要注意的
-
定义数栈、符号栈,需要的变量
-
出入栈操作
-
利用ASCII码判断是否是运算符,以及比较运算符之间的优先级
-
多位数拼接处理
-
边界问题处理
核心思路清楚之后,写代码就会变得简单且非常有条理了😊,具体请看下文👇
3、代码实现
package main
import (
"errors"
"fmt"
"strconv"
)
type Stack struct {
MaxTop int // 栈的容量
Top int // 栈顶下标 默认 -1
arr [20]int // 数组模拟栈
}
// 入栈
func (stack *Stack) Push(val int) (err error) {
// 栈满
if stack.Top == stack.MaxTop-1 {
fmt.Println("stack full")
return errors.New("stack full")
}
stack.Top++
// 放入数据
stack.arr[stack.Top] = val
return
}
// 出栈
func (stack *Stack) Pop() (val int, err error) {
if stack.Top == -1 {
fmt.Println("空栈")
return 0, errors.New("空栈")
}
// 取出数据
val = stack.arr[stack.Top]
stack.Top--
return val, nil
}
// 遍历栈
func (stack *Stack) List() {
if stack.Top == -1 {
fmt.Println("空栈")
return
}
for i := stack.Top; i >= 0; i-- {
fmt.Printf("arr[%d] = %v \n", i, stack.arr[i])
}
}
// 判断是运算符的函数 + - * / , 利用 ASCII 码
func (stack *Stack) IsOper(val int) bool {
if val == 42 || val == 43 || val == 45 || val == 47 {
return true
} else {
return false
}
}
// 运算的方法
func (stack *Stack) Cal(num1 int, num2 int, oper int) int {
// 注意运算的顺序
res := 0
switch oper {
case 42:
res = num2 * num1
case 43:
res = num2 + num1
case 45:
res = num2 - num1
case 47:
res = num2 / num1
default:
fmt.Println("运算符错误")
}
return res
}
// 返回运算符的优先级: * / => 1 ; + - => 0
func (stack *Stack) Priority(oper int) int {
res := 0
if oper == 42 || oper == 47 {
res = 1
} else if oper == 43 || oper == 45 {
res = 0
}
return res
}
func main() {
// 数栈
numStack := &Stack{
MaxTop: 20,
Top: -1,
}
// 符号栈
operStack := &Stack{
MaxTop: 20,
Top: -1,
}
// 表达式
exp := "33+2*6/1-2" // 字符串本身也是切片
// 定义需要的变量
num1 := 0
num2 := 0
oper := 0
keepNum := "" // 字符串 用于拼接多位数
// 定义索引,扫描表达式
index := 0
for {
ch := exp[index : index+1] // 每次拿到一个字符, 如果数字大于1位就会出问题, 在非符号字符入栈时处理
temp := int([]byte(ch)[0]) // 字符对应的 ASCII 码
if operStack.IsOper(temp) {
// 符号
if operStack.Top == -1 {
// 1. 符号栈为空
operStack.Push(temp)
} else {
// 2. 符号栈不为空
// 2.1 栈中的符号优先级大于等于即将入栈的符号
if operStack.Priority(operStack.arr[operStack.Top]) >= operStack.Priority(temp) {
num1, _ = numStack.Pop()
num2, _ = numStack.Pop()
oper, _ = operStack.Pop()
result := operStack.Cal(num1, num2, oper)
numStack.Push(result)
operStack.Push(temp)
} else {
// 2.2 栈中的符号优先级小于即将入栈的符号
operStack.Push(temp)
}
}
} else {
// 数字
// 多位数拼接
keepNum += ch
// 判断扫描的下一位是不是运算符, 边界问题(表达式最后, 预防溢出)
if index == len(exp)-1 {
// 字符 转数字
val, _ := strconv.Atoi(keepNum) // Atoi是ParseInt(s, 10, 0)的简写。 返回的就是 int 类型
numStack.Push(val)
} else {
// 向后看一位
if operStack.IsOper(int([]byte(exp[index+1 : index+2])[0])) {
val, _ := strconv.Atoi(keepNum) // Atoi是ParseInt(s, 10, 0)的简写。 返回的就是 int 类型
numStack.Push(val)
keepNum = ""
}
// 其它情况不做处理,index++, 判断下一个字符
}
/*
// 字符 转数字
// val, _ := strconv.ParseInt(ch, 10, 0) // 返回 int64, 需要转 int(val)
val, _ := strconv.Atoi(ch) // Atoi是ParseInt(s, 10, 0)的简写。 返回的就是 int 类型
numStack.Push(val)
*/
}
// 判断扫描位置
if index+1 == len(exp) {
fmt.Println("扫描到最后了")
break
}
index++
}
// 扫描完毕,之后对数栈和符号栈剩余元素处理
for {
if operStack.Top == -1 {
fmt.Println("没有运算符了, 数栈中的值就是计算结果")
break
}
num1, _ = numStack.Pop()
num2, _ = numStack.Pop()
oper, _ = operStack.Pop()
result := operStack.Cal(num1, num2, oper)
numStack.Push(result)
}
// 如果计算正确,数栈中只剩下一个元素,就是计算结果
res, _ := numStack.Pop()
fmt.Printf("表达式: %s = %v \n", exp, res)
}
4、输出结果
扫描到最后了
没有运算符了, 数栈中的值就是计算结果
表达式: 33+2*6/1-2 = 43
5、小结
-
处理这个问题,就是要让程序像人脑一样思维,会有一个“前后看一下”然后比对的效果。
-
因为代码是顺序执行的,所以需要把依次读取到的表达式元素按照数和符号分开保存起来,按符号优先级进行数的运算
-
数据结构采用——栈,利用 “栈” 的特点:一个先入后出(FILO-First In Last Out)的有序列表。最先放入栈中元素在栈底,最后放入的元素在栈顶,而删除元素刚好相反,最后放入的元素最先删除,最先放入的元素最后删除
我是 甜点cc
微信公众号:【看见另一种可能】