深度学习入门-Pytorch

这篇博客介绍了PyTorch中张量的基本操作,包括创建、重塑、运算以及连接。此外,还展示了如何进行数据预处理,如计算均值填充缺失值,以及使用one-hot编码处理分类数据。
摘要由CSDN通过智能技术生成

import torch

张量tensor : 数值组成的,可能是多维的数组
   a) 一个轴张量对应数学上的向量vector;
   b) 两个轴张量对应数学上的矩阵matrix。  

# arange创建⼀个⾏向量x
x = torch.arange(12)
print("x.data = ", x.data)    # x.data =  tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
print("x.shape = ", x.shape)     # x.shape =  torch.Size([12])
print("x.numel = ", x.numel()) #x.numel =  12

# reshape函数:改变⼀个张量的形状而不改变元素数量和元素值
x_chg = x.reshape(3,4)
x_chg1 = x.reshape(-1,4) #-1 表示自动推到
x_chg2 = x.reshape(3,-1)
print("x_chg = ", x_chg)  #x_chg =  tensor([[ 0,  1,  2,  3], [ 4,  5,  6,  7], [ 8,  9, 10, 11]])

#创建一个张量,所有元素置为0
x = torch.zeros((2, 3))
print("x.data = ", x.data)    #x.data =  tensor([[0., 0., 0.], [0., 0., 0.]])

#创建一个张量,素有元素置为1
y = torch.ones((2,3))
print("y.data = ",y.data)     #y.data =  tensor([[1., 1., 1.], [1., 1., 1.]])

z = torch.randn(3,4)
print("z.data=", z.data)  #创建一个3X4的张量,每个元素都从均值为0、标准差为1的标准⾼斯(正态)分布中随机采样

m = torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) #创建一个新的张量,并初始化对应值
print("m.data = ", m.data)

#常⻅的标准算术运算符(+、-、*、/ 和 **)都为按元素运算
x1 = torch.tensor([1.0, 2,4,8])
y1 = torch.tensor([2,2,2,2])

print("x+y = ", x1 +y1)          #x+y =  tensor([ 3.,  4.,  6., 10.])
print("x-y = ", x1 -y1)        #x-y =  tensor([-1.,  0.,  2.,  6.])
print("x*y = "

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值