弹性系数法在对一个因素发展变化预测的基础上,通过弹性系数对另一个因素的发展变化作出预测的一种间接预测方法。弹性系数法适用于两个因素y和x之间有指数函数关系的情况,式中α为比例系数,b为y对x的弹性系数。
弹性一词来源于材料力学中的弹性变形的概念。弹性系数指材料长度变形的百分比同所施加力变化的百分比的比率,称为交互弹性。后来弹性的概念被推广应用于社会经济领域。弹性系数被用来表示两个因素各自相对增长率之间的比率。在某一时期内能源消耗的增长率同工农业总产值的增长率的比率,就称为在该时期内能源消耗相对于工农业总产值的弹性系数。如果这个系数为0.9,比例系数α为1.096,工农业总产值预测增长为7.2%,那么能源消耗增长的预测就是6.48%。
弹性系数法的预测公式
有3种表达形式:
1、
2、
3、(近似公式为)
式中k为基期,t为预测期。相应地弹性系数b也有3种估值方法:
1、logyt = blogxt + loga用最小二乘法求得
2、
3、
从y同x的函数关系中求得。当弹性系数为常数时,称为恒弹性系数,否则为变弹性系数。称为弹性充足;|b|1,称为弹性充足;|b|
弹性系数法的应用
弹性系数法在能源方面应用很广,常用的是能源需求相对于国民生产总值(GNP)的弹性系数。例如工业的弹性系数,中国1950~1978年为0.95~1.0;美国1950~1973年为0.94;日本1960~1973年为1.0,1975~1978年降为0.43。工农业总产值预测增长为7.2%,那么能源消耗增长的预测就是6.48%。大多数国家在 1.0附近。对于商品的市场需求量,可对消费者收入水平求弹性,称为需求量的收入弹性;对其价格求弹性,称为价格弹性;对另一产品(互补产品或代用产品)的价格求弹性,称为交互弹性。
弹性系数法在现代物流中的应用:
此方法的数学模型为:
-
式中:
- ——未来第L期的预测值;
- YT——预测对象在当前统计期值;
- i’,i——预测对象在过去和未来时间的平均增长率(%);
- L——预测期的时间长度;
- q’,q——分别为类比变时在过去和在未来的年均增长率。
例:某地区在某年的货物周转量为2000万t.km,在过去的5年中,该地区的货物周转量年平均增长率为5%,而其国民生产总值的年平均增长率为10%,预计未来3年中该地区的国民生产总值将保持8%的平均增长速度,那么该地区3年后的货物周转量为:
(万t.km)