编者按:本文根据AI’s race to value: A conversation with Abridge, Anthropic, Perplexity, and Scale AI和视频访谈内容进行精编。
这次对话讨论了人工智能技术的现状和未来,展示了AI行业领导者对其快速发展、挑战以及在各个领域潜在影响的见解。
四位AI独角兽的创始人开诚布公的讨论了AI行业的现状、为什么“现在还为时过早”,市场机会在哪里、当前的竞争格局以及AI可行的商业模式,以及领导者和构建者如何驾驭从技术突破到行业采用的复杂道路。
以下为正文。
当我们向顶级CEO询问AI市场的现状时,他们的观点很明确:“现在还为时过早。”
现在还为时过早
但是,如果云经济的发展教会了我们什么,那就是未来的AI巨头将不仅由卓越的技术来定义,还需要分发和可持续的商业模式。今年,模型和应用层的新一代AI初创公司正在探索创新的商业模式和上市策略。
因此,在Cloud 100的舞台上,我们聚集了塑造人工智能未来的领导者:Anthropic的联合创始人兼总裁Daniela Amodei,Perplexity首席执行官兼创始人Aravind Srinivas,Abridge首席执行官兼创始人Shiv Rao,以及Scale AI首席执行官兼创始人Alexandr Wang。
这些顶级AI领导者共同分享了对当今高管和构建者面临的现实的见解。虽然技术以惊人的速度发展,但AI的应用仍面临障碍:可用性、道德、分发和留住客户。
为了克服这些挑战,初创公司必须专注于小众应用,设计以用户为中心的体验,并驾驭交付企业级解决方案所需的基础设施复杂性。最终,AI领域的成功将取决于随着时间的推移增加价值的能力,适应不断变化的市场需求,并在竞争日益激烈的环境中打造出有意义的差异化。
尽管AI已经很强大,但这项技术仍处于起步阶段
在过去几年中,AI发生的最大变化是什么?也许是大模型变得多么用户友好。机器学习和算法长期以来一直是软件技术堆栈的一部分。现在,大多数人每天都在使用它们。也许这导致每个人都认为他们对他们有所了解。我们询问了各位创始人,您最希望现在有更多的人了解AI的哪些方面?
首先,为团队配备合适的技能和技术,从而将人工智能工具推向市场是多么复杂和困难。为临床医生提供AI工具的Abridge的创始人兼首席执行官Shiv Rao说。“卓越的解决方案需要的不仅仅是计算机科学专业知识、教授、博士或专有数据模型。但同样重要的是领域专家,例如那些在现实场景中测试这些系统的人,他们提供的反馈使我们能够持续迭代和改进。”
Anthropic的创始人兼总裁Daniela Amodei强调了行业还有很长的路要走。“尽管数字令人震惊,人工智能正在以惊人的速度发展,而各行业将其融入工作流程的过程仍处于早期阶段,但摆在我们面前的工作比已经完成的要多得多,”她说。在Anthropic,她正在努力思考如何将所有必要的道德、安全和信任等最高价值观注入当今的Claude 模型。
摆在面前的工作比已经完成的要多的多
提供AI基础设施的Scale AI的创始人兼首席执行官Alexandr Wang强调,核心技术的进步速度远比消费者看到的要快得多。“你不应该期待看到这些模型的性能有任何放缓,”他说。“我相信我们现在正处于这项技术的部署阶段。重点是如何将这些神奇的模型尽快部署到整个经济活动中。对于Scale来说,关键焦点在于需要整合大量专有和独特的数据到这些模型中,以创建差异化的能力,并在这个部署阶段取得成功。这是我们花费大部分时间的地方。”
与此同时,Perplexity的首席执行官Aravind Srinivas指出,智能搜索的应用还不到大规模应用的程度。“现在还为时过早,人们并没有经常使用这些工具,他们需要更直观、更易用,“他说。“我们在Perplexity的目标是将其他人构建的所有优秀模型整合起来,打造出令人惊叹的用户体验。我们的卖点在于致力于提供尽可能快速且准确的回应。”
AI的发展速度超过了行业吸收的速度
Daniela说,他们开发人工智能技术的速度往往超过了行业适应和整合这些新进展的速度。
模型的新功能需要双重聚焦的方法。一方面,需要训练和优化模型以达到卓越性能。另一方面,挑战在于如何以快速高效的方式让这些模型为企业所用。这需要一套独特的技能。
“我们会提出新的研究领域、兴趣和功能,但你必须将它们转化为企业可以快速使用的东西,”她说。她将其比作用双手工作,其中一只手比另一只手慢得多。
Alexandr认为社会甚至还没有发现AI的最佳用途,对他来说,这是一个令人兴奋的前提。“我们还不知道巨大的杀手级应用在哪里,我认为这意味着基础设施层将在未来许多年内实现高速增长。”他说,与互联网类比,Netscape时代比主要互联网公司的崛起早了许多年。“我们目前正处于类似的阶段。这也恰逢全球和政府不稳定性急剧增加的新时期,从全球范围来看,我们正看到国防开支的大幅增加,这是不可否认的。国防的历史就是一部新技术的竞争史,这将加剧机构对AI的兴趣。在我看来,自由世界的命运取决于人工智能是否是这个时代的决定性创新。Anthropic和Scale AI都花了很多时间与政府合作,帮助他们理解这项技术及其影响。”
医疗等受监管行业应用AI的速度最快
“我认为现在没有任何行业像医疗行业那样迅速地采用AI,”Shiv说。“我们几乎每周都会发布一个新的医疗系统,我认为这个行业对这项技术的接受程度是是深远的。造成这种情况的原因有几个:现在五分之二的医生在未来两三年内不想继续行医,超过四分之一的护士在12个月内想离职,这已经造成了公共卫生紧急状态。很快就会出现临床医生短缺,无法提供医疗服务,患者被迫长途跋涉,有时候从农村到城市需要四五个小时,才能见到需要的专科医生。这种倦怠和流失率导致医疗组织争先恐后地寻找提高护理质量和临床医生体验的方法。
例如,Abridge使用生成式AI将患者与临床医生的对话转换为实时临床记录,高效的管理笔记、医嘱和其他任务,从而带来立竿见影的好处:减少文档记录、提高患者参与度、多语言支持和改善临床医生的处境。
“我们从初级医生那里得到的最深刻的反馈是,在他们20-30年的职业生涯中,这是他们第一次与患者进行眼神交流,”Shiv说。
Daniela认为Claude和Anthropic作为处于技术栈中Scale.ai的上一层,模型渗透到经济活动中主要部分的速度虽然因行业略有不同,但进展非常迅速。目前大约一半的财富500强公司在各种应用中使用Claude。他们使用Claude的应用范围很广,其中编程是最常见的用例之一。任何拥有开发人员的团队都可以使用Claude来提高代码质量并加速编码和审查过程。这对于那些可能不被视为高度技术化但拥有大量遗留代码库需要翻译成新语言的行业尤其有益。Claude可以在人类所需的很短时间内完成这些任务。
此外,医疗保健的确是另一个适合人工智能颠覆的行业。许多医疗从业者被行政工作量压得喘不过气来。Claude可以安全地从笔记或口头交流中总结患者信息,使医疗专业人员能够更多地专注于患者护理。
金融服务,另一个高度监管和基于信任的行业也将从中受益。Claude可以在从财务分析到市场情绪分析的任务中充当宝贵的副驾驶,在这些情况下,意味着专家可以花更多时间与客户在一起。
总的来说,传统上对新技术的采用较慢的行业正在越来越多地拥抱人工智能,认识到这些应用的变革潜力。
各行各业并非铁板一块,AI初创公司正在学习细分市场
医疗等领域的创始人都知道,医院不是诊所,不是牙科诊所,也不是医疗设备供应商。垂直行业和独特的环境为AI初创公司带来了新的挑战,他们需要在特定数据集上训练模型以完成特定任务。但这也是一个细分市场的机会。
“这里有凯撒医疗集团、麻省总医院、约翰霍普金斯医院和匹兹堡大学医学中心等大型医疗系统,在另一端,有独立执业的医生,他们在保险体系之外运作,直接接受患者的现金支付。在中间,有一些较小的医疗服务提供者。”Shiv说。他们是两种截然不同的角色,有着截然不同的需求,“更不用说容忍度了。在大型卫生系统中,'足够好'的门槛非常高,每位医生都代表一个边缘案例。如果你犯了一个错误,就会永远失去他们的信任。但是个体医生或小型诊所,足够好的门槛较低,他们只需要某种形式的辅助。在这个领域的解决方案往往在不同维度上竞争,有时侧重于成本,有时则完全不同。“
“我相信类似的模式也会出现在其他垂直行业中。对我们来说,挑战包括跨越各种医学专业领域。从语音识别的角度来看,我们必须准确识别症状、药物、诊断、手术,甚至要考虑到医生对药物名称的误读。除此之外,我们还需要创建适合像我这样的心脏病专家,以及放射肿瘤学家、血液学家等使用的笔记。“
“感觉我们就像在一台永远无法停下的跑步机上。我们的目标是吸引更多用户,收集更多数据,并开发更多可以与更大模型和更复杂技术栈协同工作的模型。这些模型必须无缝集成到现有系统中,因为没有人愿意放弃他们当前的设置。这种集成应该像优质的空调一样—恰到好处,以至于你甚至感觉不到它的存在。“
长期的挑战仍然存在:分发
在另一个极端,Perplexity正在通过Uber应用或Lenny的时事通讯进行推送,这让人感觉 Perplexity无处不在。
当Aravind第一次开始为Perplexity募资时,他有信心可以基于新模型构建更好的产品,与老牌竞争对手相比,该模型在用户体验方面的利益冲突更少。但只有产品是不够的。
“投资人会告诉你的第一件事是,搜索的关键在于分发。当我遇到我的种子投资者吉尔时,最初的想法是通过眼镜进行搜索来颠覆谷歌。人们不再需要在谷歌搜索栏中输入内容。他们只需就所见之物提出问题,所有查询都将无缝处理,这听起来完美无缺,我们将成为下一个谷歌。“他回应道:“嗯,嗯,这些都挺酷的,但你们打算如何搞定分发呢?”
“我认为还有一个广为流传的故事,讲的是桑达尔如何成为谷歌的CEO。当所有人都专注于那些华而不实的项目时,他却致力于让Chrome成为主导浏览器。“
“这就是我们与多个国家的众多电信运营商、LinkedIn、Uber等合作的原因。”
当转换成本较低时,体验就是一切
产品的内在价值是什么?
Aravind认为Perplexity的价值在于比其他搜索提供商更好地回答人们的问题。人们会选择最好的体验。“市面上有许多其他聊天机器人,但在准确度上存在明显差异。我们总是从网络中提取多个相关来源,并将多个来源的信息汇总在一起,这帮助我们实现了更高的准确性。”他说。“尤其是在实时知识方面。这就是人们为什么更喜欢使用我们”,Aravind说,仅去年一年,他们就处理了5亿次查询,而现在每月都会达成这一目标,如果增长轨迹持续下去,Perplexity将达到谷歌在IPO时的查询量。同时,他们还寻求与其他聊天机器人不同的商业模式,即不通过传统的赞助链接,探索其它广告形态,例如将赞助问题、视频或图片整合到答案中。
“这是一项实验,因为很少有公司在探索订阅和以消费者为中心的策略之外的商业模式。如果成功,我们打算与内容创作者分享广告收入,他们的工作为答案做出了贡献。这一愿景促使我们推出了发布者计划。”
不成熟的市场对新模式很宽容
在成熟市场中,必须更仔细地规划上市行动。但在今天这样的市场中,随着未开发的领域迅速扩张,可能更重要的是开始。
“我们仍处于行业的早期阶段,许多商业模式都会奏效。获取用户的许多方法也将如此,“Alexandr说。“无论是PLG、自上而下的销售、政府合同,还是专注于模型和基础设施层,一切都会成功。如果我们向前跳10年,我认为AI显然将无处不在。总而言之,还有巨大的增长空间和众多参与者。
但正如我们在其他技术范式转变中看到的那样,Alexandr认为先行者在AI时代仍将占据优势。他将这些等同于Internet和浏览器战争的早期。“我和A16Z创始人本·霍洛维茨讨论过Netscape,”Alexandr说,“他告诉我,'是的,我们最初认为会通过浏览器盈利,然后Internet Explorer压垮了我们。因此我们建立了一项全新的业务,即服务器,最终它比我们的浏览器业务规模要大得多。“
他反思道,如果那个业务也被打乱,他们可以再建立一个同样庞大的业务,这突显了那些往往难以预见的巨大机遇。
收获?随着技术的发展和新商业模式的出现,许多重大业务机会还有待发现。然而,在市场中站稳脚跟并尽早建立稳固分发模式的AI参与者将获得竞争优势。他们将获得探索新变现策略并继续发展的灵活性。
应对留存率挑战的最佳回应是什么?了解你的客户
留存率几乎在每个数字市场都是一项挑战,尤其是那些转换成本较低的市场。AI 初创公司如何留住这些首次使用的用户?Perplexity专注于让各种首次使用的用户群组进行第二次查询。“我们努力确保每一周,用户群体都能持续进步,这是一个积极的趋势。到目前为止,情况确实如此。我们特别关注不同人口统计群体中的留存率,尤其是在我们最大的市场—美国。在美国,我们还会追踪学校中的留存率,因为我们相信下一代对谷歌的忠诚度较低,因此留住他们变得更加关键。“
“我们重视的另一个指标是,是否有人在Perplexity上至少执行过一次查询后,会在其生命周期内再次执行查询。例如,如果用户只尝试了一次产品就再也不回来,这对我们来说是不利的。最初,大约80%执行过至少一次查询的用户会继续执行另一次查询。我们的目标是尽可能将这个数字推向100%。如果我们能做到这一点,就可以进一步鼓励执行过两次查询的用户至少执行五次查询,从而建立使用习惯。这是每家消费类公司都希望完善的关键指标,就像Facebook曾经专注于用户在其社交网络上的好友数量一样。“
“对于Perplexity来说,最重要的是前几次尝试中准确查询的数量。用户如果不忠于Google,他们成为Perplexity常用户的概率会更高。有两类人绝对符合这一类别。一个群体由那些对谷歌长期缺乏关注提供良好用户体验感到失望的个人组成。另一个群体则包括年轻一代,他们不太习惯持续在搜索引擎中输入查询。”
对于Daniela和Anthropic来说,成功就是专注地了解和服务他们的特定受众。“Claude用户往往受过高等教育,并将其用于工作或相关任务。所以我开玩笑说,我们不是在制作单板滑雪猫视频的生意。这些都非常有趣。但这不是我们的用户群所要求的。他们在写作、分析信息和审阅法律文件等方面需要帮助。最终,我们的目标是开发出对专业人士有益的工具,他们需要云技术来完成智力要求高且引人入胜的任务。我们相信这是技术未来发展的方向。“
期望幻灭 vs 指数增长
Alexandr认为,“AI确实存在某种程度的幻灭低谷,但在其背后,有一条令人难以置信的指数增长曲线将继续向前推进。坦率地说,我认为这种幻灭的原因在于像这样的讨论会,行业内的某些人声称人工智能将为你完成一切。
我认为AI行业本身在控制期望方面做得并不好。例如,Anthropic在这方面做得不错,但总体来说,整个行业在这方面都遇到了困难。与此同时,这项技术非常强大,许多人正在发现如何有效地使用它。无论是在客户支持、开发、医疗保健,还是政府效率方面,这些应用场景都非常真实且具有影响力。它们如今显然带来了显著的投资回报率,而未来的价值也显而易见,无需过多思考。另一个例证是当ChatGPT最初走红时,许多人评论说其留存曲线表现不佳。而这不仅仅是一时的潮流。ChatGPT在近两年后依然快速增长,具有显著的商业化潜力。同样的情况也适用于更广泛的AI领域。在与企业或政府客户接触时,我们常常会遇到他们对AI能立即实现的高期望。正如Daniela所提到的,虽然一些高级用例目前可能还不可行,但有许多更简单的应用现在就能带来价值。
这显然是在OpenAI O1发布之后。他们都能看到技术的进展速度,以及它如何迅速解决他们的许多担忧。兴奋之情非常明显。人们开始问:‘我能将这种推理应用到我的独特问题上吗?’
这种将推理实时应用到感知到的独特问题上的情况正在发生。我相信低谷是真实的,而且有很多幻灭感。“
如果与巨人竞争,则在一个狭窄的用例中获胜
Perplexity正在与最大的搜索引擎竞争。他们打算如何获胜?只在他们可以胜出的领域竞争,从而为用户提供增量价值。“有一点非常清楚,那就是我们并没有试图消除导航行为。例如,如果你查看Google Trends并研究Google上搜索频率最高的25个关键词,你会发现像亚马逊、Reddit、Netflix、沃尔玛、好市多和Instagram这样的单个词汇,常常被人们用来访问特定网站。我们并不针对这种使用场景,这类搜索可能每天有数十亿次。“Aravind说。“事实上,谷歌在美国的搜索流量已经趋于饱和,而在世界其他地区仍在持续增长。为了在美国增加广告收入,谷歌不得不展示更多广告,因为在GDP最高的国家,没有其他方法可以提升收入。相反,他和团队的目标是详细、复杂的查询,而像Perplexity这样的引擎在这些查询中具有优势。“我们的目标是占据这一流量中的显著份额。虽然Gemini也会在这一领域竞争,但显然没有单一玩家能够垄断它。我们并不专注于导航查询流量,而是致力于成为最好的答案引擎。”
Perplexity团队还小心翼翼地只在对用户来说重要的事情上展开竞争,即实际体验。“有趣的是,由于谷歌现有的商业模式是驱动用户点击链接,谷歌无法轻易改变其核心功能。这为任何试图挑战谷歌的人提供了一个前所未有的独特机会。过去,任何竞争对手都会在隐私或垄断行为或简单地将谷歌贴上“邪恶”标签来攻击谷歌,”Aravind说。“消费者并没有真正从中获得差异化的体验。但现在这是可能的,因为指令微调、对话式人工智能以及能够在没有幻觉的情况下进行总结的技术的进步,创造了一个全新的竞争格局。
尽管存在所有差异,但每家AI初创公司都有两种选择
是否会有千亿美元规模的AI企业能够与主要的云计算公司并驾齐驱?
Shiv认为就像医疗一样,AI进步的速度取决于信任的速度。“今天,我们宣布与国内一些顶级医疗系统建立研究合作,称为Abridge研究协作组(ARC)。我们将在全国范围内发布随机对照试验(RCTs),以评估该技术在实际环境中的表现。这对于一家年轻的公司来说是最具挑战性的任务之一,尤其是在企业服务领域。”
“要么上市,要么出售。它是一个长期的渐近未来,“Aravind说。“为此,你必须盈利,或者处于盈利的路上。此外,你必须拥有一个能够随着用户吸引力提升而扩展的商业模式。如果你不需要持续在销售上投入大量资金,那将是非常了不起的,因为这会带来更高的利润率。这正是我们想要实现的目标。如果人们的日常习惯发生变化,他们开始提出更多问题—我们的活跃用户平均每天至少提出七个问题—并且这种行为在全球范围内传播,而不仅仅局限于技术爱好者群体,同时如果我们能够将其中大部分查询货币化,我可以预见这将成为一家上市公司。“
“另一个优势是模型构建者之间的竞争,这将推动价格下降。开源技术的进步也在稳步推进,确保运营该产品的成本将持续降低。随着我们规模的扩大,我们将受益于每次查询成本的降低。”
能力在不断提升对应用层公司来说是非常有利的。显然,虽然内容为王,但分发至关重要。要想成功,你必须拥有用户和客户。如果你能提供强大的产品并利用基础设施层的进步,你就占据了有利位置。关键是要确保一个盈利且可扩展的商业模式。
关键问题在于你是否具备在极长时间内持续复利的能力。我相信这在人工智能的帮助下非常有可能实现。
注:本文由叮当好记辅助生成。