北大激活函数的选择, my write

1. 对于初学者的建议

  • 首选 relu 激活函数;
  • 学习率设置较小值;
  • 输入特征标准化,即让输入特征满足以 0 为均值,1 为标准差的正态分布;
  • 初始参数中心化,即让随机生成的参数满足以 0 为均值,当前层输入特征个数为标准差的正态分布 。

2. 激活函数比较

激活函数公式输出范围优点缺点适用场景
Sigmoidσ(x)=1+e−x1​(0, 1)输出有概率解释,平滑可导梯度消失,输出非 0 中心二分类输出层
Tanhtanh(x)=ex+e−xex−e−x​(-1, 1)输出 0 中心,缓解梯度更新方向偏差梯度消失隐藏层
ReLUf(x)=max(0,x)x≥0时为x,x<0时为 0计算简单,缓解梯度消失神经元死亡,输出非 0 中心常用隐藏层
Leaky ReLUf(x)={x,αx,​x≥0x<0​ (α为小正数)无固定范围解决神经元死亡问题α需调优ReLU 出现问题时的隐藏层
Softmaxσ(z)j​=∑k=1K​ezk​ezj​​所有输出和为 1多分类概率输出清晰计算量大多分类输出层
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小硕算法工程师

你的鼓励将是我创作的最大动力哈

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值