深度学习
文章平均质量分 80
无尽的沉默
stay foolish,stay hungry
展开
-
Python爬虫获取百度的图片
XPath 是 Scrapy 中常用的一种解析器,可以帮助爬虫定位和提取 HTML 或 XML 文档中的数据。Scrapy 中使用 XPath 的方式和普通的 Python 程序基本一致。我们需要首先导入 scrapy 的 Selector 类和 scrapy 的 Request 类,然后使用 Selector 类来解析 Response 对象,并使用 XPath 表达式来定位和提取数据。Selenium 是为了解决 requests 无法直接执行 JavaScript 代码的问题。原创 2024-01-07 16:05:34 · 4254 阅读 · 2 评论 -
迁移学习--Xception
一.Xception的概述Xception是inception处于极端假设的一种网络结构。当卷积层试图在三维空间(两个空间维度和一个通道维度)进行卷积过程时,一个卷积核需要同时绘制跨通道相关性和空间相关性。前面分享的inception模块的思想就是将这一卷积过程分解成一系列相互独立的操作,使其更为便捷有效。典型的inception模块假设通道相关性和空间相关性的绘制有效脱钩,而Xception的思想则是inception模块思想的一种极端情况,即卷积神经网络的特征图中的跨通道相关性和空间相关性的绘制原创 2021-04-22 17:49:03 · 3397 阅读 · 3 评论 -
迁移学习---inceptionV3
一.迁移学习的概述迁移学习是指将一个在某领域完成学习任务的网络应用到新的领域来进行学习任务。基于卷积网络实现迁移学习对于已经训练完毕的网络模型来说,通常该网络模型的前几层学习到的是通用特征,随着网络层次的加深,更深次的网络层更偏重于学习特定的特征,因此可将通用特征迁移到其他领域。对于深度卷积网络来说,经过预训练的网络模型可以实现网络结构与参数信息的分离,在保证网络结构一致的前提下,便可以利用经过预训练得到的权重参数初始化新的网络,这种方式可以极大地减少训练时间。具体步骤如下:①选定基于I原创 2021-04-22 17:28:23 · 4742 阅读 · 0 评论 -
经典卷积网络进阶--ResNet详解
一.ResNet概述resnet在2015名声大噪,微软公司提出了一种新的网络结构---残差网络(resnet)。残差模块结构图如下图1,图中曲线连接方式(X identity)称为近道连接,这种连接方式直接跳过了权重层;经过权重层的连接方式(F(X))与近道连接(X identity)构成了残差模块 图1残差网络是由一系列残差块组成的(1式)。一个残差块可以用表示为:残差块分...原创 2021-04-21 19:37:23 · 4260 阅读 · 2 评论 -
经典卷积网络进阶--GoolgleNet详解
一.GoolgleNet概述GoogLeNet是google推出的基于Inception模块的深度神经网络模型,在2014年的ImageNet竞赛中夺得了冠军。其性能比vgg网络更好。通常来说提高网路性能最直接的方法就是增加网络结构的深度和宽度,但这种方法往往伴随着参数计算量的增加,而且更容易出现过拟合现象。GoogLeNet提出将全连接层甚至一般的卷积都转化为稀疏连接。不同于vgg网络,提出了inception模块结构,这个创新点使得googlenet可以拥有更深,更宽的网络结构。什么是Incep原创 2021-04-21 18:20:50 · 1722 阅读 · 0 评论 -
经典卷积神经网络---VGG16详解
一.VGG概述VGGNet是牛津大学视觉几何组(Visual Geometry Group)提出的模型,该模型在2014ImageNet图像分类与定位挑战赛 ILSVRC-2014中取得在分类任务第二,定位任务第一的优异成绩。VGGNet突出的贡献是证明了很小的卷积,通过增加网络深度可以有效提高性能。VGG很好的继承了Alexnet的衣钵同时拥有着鲜明的特点。即网络层次较深。VGGNet结构VGGNet模型有A-E五种结构网络,深度分别为11,11,13,16,19。其中较为典型的网络结构主要有原创 2021-04-21 16:50:11 · 58578 阅读 · 11 评论 -
经典卷积神经网络--AlexNet的详解
一.AlexNet的概述AlexNet由Geoffrey和他的学生Alex提出,并在2012年的ILSVRC竞赛中获得了第一名。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。AlexNet网络结构具有如下特点:1.AlexNet在激活函数上选取了非线性非饱和的relu函数,在训练阶段梯度衰减快慢方面,relu函数比传统神经网络所选取的非线性饱和函数(如sigmoid函数,tanh函数)要快许多。2.AlexNet在双gpu上运行,每个gpu负责一半网络的运算3.采用局部响原创 2021-04-18 22:44:27 · 39973 阅读 · 9 评论 -
经典卷积神经网络--LeNet-5的详解
一.LeNet概述LeNet由Yann Lecun 创建,并将该网络用于邮局的邮政的邮政编码识别,有着良好的学习和识别能力。LeNet又称LeNet-5,具有一个输入层,两个卷积层,两个池化层,3个全连接层(其中最后一个全连接层为输出层)。LeNet网络结构图如下:LeNet-5共有7层(不包含输入),每层都包含可训练参数。输入图像大小为32*32,比MNIST数据集的图片要大一些,这么做的原因是希望潜在的明显特征如笔画断点或角能够出现在最高层特征检测子感受野(receptive field原创 2021-04-10 17:57:37 · 17838 阅读 · 6 评论 -
卷积神经网络的详解
前言:卷积神经网络(Convolution Neural Network,CNN)是通过模拟人脑视觉系统,采取卷积层和池化层依次交替的模型结构,卷积层使原始信号得到增强,提高信噪比,池化层利用图像局部相关性原理,对图像进行邻域间采样,在减少数据量的同时提取有用信息,同时参数减少和权值共享使得系统训练时间长的问题得到改善。目前主流的卷积神经网络(CNNs),比如VGG, GoogleNet,ResNet都是由简单的CNN调整,组合而来。一.卷积神经网络结构及原理CNN是一种多层网络,它的每..原创 2021-04-03 23:48:05 · 15527 阅读 · 0 评论