LeetCode 96. Unique Binary Search Trees - 二叉搜索树(Binary Search Tree)系列题1

Given an integer n, return the number of structurally unique BST's (binary search trees) which has exactly n nodes of unique values from 1 to n.

Example 1:

Input: n = 3
Output: 5

Example 2:

Input: n = 1
Output: 1

Constraints:

  • 1 <= n <= 19

题目大意是给定一个正整数n,如果以值从1到n创建n个节点,那么这n个节点能构造出几科不一样的二叉搜索树。

二叉搜索的特点是左子树所有节点值不大于根节点值,右子树所有节点值不小于根节点值。如果我们从1~n范围内取一个值i作为根节点,那么左子树的节点个数就是i-1个, 右子树的节点个数是n-i个,如果能知道i-1个节点和n-i个节点分别能构造出多少棵二叉搜索树,那么二者相乘就是以i为根节点的二叉搜索树的个数。分别以从1到n的每个值为根节点的树个数总和就是n个节点所能构造的个数。很显然节点数为0或1时只能有一个棵树(0个节点可以被看成一棵空树),因此可以用递归法。另外随着不停的分割和递归,左右两边会出现很多相同的数字,这会造成很多重复计算,因此需要把已经算过的数记录下来,以便再出现时直接返回而不是再一次递归求解。

class Solution:        
    def numTrees(self, n: int) -> int:
        mem = {}
        
        def helper(n):
            if n <= 0:
                return 1
            nonlocal mem
            if n in mem:
                return mem[n]
            res = 0
            for i in range(1, n + 1):
                res += helper(i - 1) * helper(n - i)
            mem[n] = res
            return res
        
        return helper(n)

注:这题还可以用动态规划法,将在将在刷DP系列时再用DP法再刷一遍这题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值