第八周 猫狗识别

🍨 本文为[🔗365天深度学习训练营(https://mp.weixin.qq.com/s/Nb93582M_5usednAKp_Jtw) 中的学习记录博客
🍦 参考文章:365天深度学习训练营-第7周:咖啡豆识别(训练营内部成员可读)
🍖 原作者:K同学啊 | 接辅导、项目定制
🚀 文章来源:K同学的学习圈子

环境准备

  • python 3.8
  • Tensorflow2.x
  • pycharm编辑工具

数据集划分与数据预处理

 train = tf.keras.preprocessing.image_dataset_from_directory(
            self.DataPath,
            validation_split=.2,
            subset="training",
            seed=42,
            image_size=self.img_size,
            batch_size=self.batch_size
        )
 
        val = tf.keras.preprocessing.image_dataset_from_directory(
            self.DataPath,
            validation_split=.2,
            subset="validation",
            seed=42,
            image_size=self.img_size,
            batch_size=self.batch_size
        )
        AUTOTUNE = tf.data.experimental.AUTOTUNE
        self.train = train.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
        self.val = val.cache().prefetch(buffer_size=AUTOTUNE)
        # AUTOTUNE = tf.data.experimental.AUTOTUNE
        # self.train = data_train.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
        # self.val = data_val.cache().prefetch(buffer_size=AUTOTUNE)
        return train, val

flow_from_directory :

  1. directory:
    目标文件夹路径,对于每一个类,该文件夹都要包含一个子文件夹.子文件夹中任何JPG、PNG、BNP、PPM的图片都会被生成器使用.详情请查看此脚本
    target_size: 整数tuple,默认为(256, 256). 图像将被resize成该尺寸 color_mode:
    颜色模式,为"grayscale",“rgb"之一,默认为"rgb”.代表这些图片是否会被转换为单通道或三通道的图片. classes:
    可选参数,为子文件夹的列表,如[‘dogs’,‘cats’]默认为None.
    若未提供,则该类别列表将从directory下的子文件夹名称/结构自动推断。每一个子文件夹都会被认为是一个新的类。(类别的顺序将按照字母表顺序映射到标签值)。通过属性class_indices可获得文件夹名与类的序号的对应字典。
    class_mode: “categorical”, “binary”, "sparse"或None之一.
    默认为"categorical. 该参数决定了返回的标签数组的形式,
    "categorical"会返回2D的one-hot编码标签,"binary"返回1D的二值标签."sparse"返回1D的整数标签,如果为None则不返回任何标签,
    生成器将仅仅生成batch数据,
    这种情况在使用model.predict_generator()和model.evaluate_generator()等函数时会用到.
    batch_size: batch数据的大小,默认32 shuffle: 是否打乱数据,默认为True seed:
    可选参数,打乱数据和进行变换时的随机数种子 save_to_dir: None或字符串,该参数能让你将提升后的图片保存起来,用以可视化
    save_prefix:字符串,保存提升后图片时使用的前缀, 仅当设置了save_to_dir时生效
    save_format:“png"或"jpeg"之一,指定保存图片的数据格式,默认"jpeg” flollow_links:
    是否访问子文件夹中的软链接

VGG16知识了解

  • VGG网络采用连续的小卷积核(3x3)和池化层构建深度神经网络,网络深度可以达到16层或19层。
  • 每个模型分成了5个Block,所有卷积层采用的都是3x3大小的卷积核 。 3x3卷积核可以大幅度减少网络的参数数量,从而减少过拟合的风险。
  • 多个3x3卷积核串联起来可以形成一个感受野更大的卷积核,而且这个组合具有更强的非线性能力。
  • 网络搭建:
    • 输入:224x224的RGB 彩色图像;
    • block1:包含2个 [64x3x3] 的卷积层
    • block2:包含2个 [128x3x3] 的卷积层;
    • block3:包含3个 [256x3x3] 的卷积层;
    • block4:包含3个 [512x3x3] 的卷积层;
    • block5:包含3个512x3x3] 的卷积层;
    • 接着有3个全连接层;
    • 一个分类输出层,经过 SoftMax 输出 1000个类的后验概率

网络结构图

结构说明
  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcX与predictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示
    在这里插入图片描述
    在这里插入图片描述
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 4)                 16388     
=================================================================
Total params: 134,276,932
Trainable params: 134,276,932
Non-trainable params: 0
_________________________________________________________________

模型训练

    	epochs = 100
        lr = 1e-4

        # 记录训练数据,方便后面的分析
        history_train_loss = []
        history_train_accuracy = []
        history_val_loss = []
        history_val_accuracy = []

        for epoch in range(epochs):
            train_total = len(train)
            val_total = len(val)

            """
            total:预期的迭代数目
            ncols:控制进度条宽度
            mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
            """
            with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}', mininterval=1, ncols=100) as pbar:

                lr = lr * 0.92
                K.set_value(model.optimizer.lr, lr)

                for image, label in train:
                    """
                    训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法

                    想详细了解 train_on_batch 的同学,
                    可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
                    """
                    history = model.train_on_batch(image, label)

                    train_loss = history[0]
                    train_accuracy = history[1]

                    pbar.set_postfix({"loss": "%.4f" % train_loss,
                                      "accuracy": "%.4f" % train_accuracy,
                                      "lr": K.get_value(model.optimizer.lr)})
                    pbar.update(1)
                history_train_loss.append(train_loss)
                history_train_accuracy.append(train_accuracy)

            print('开始验证!')

            with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}', mininterval=0.3, ncols=100) as pbar:

                for image, label in val:
                    history = model.test_on_batch(image, label)

                    val_loss = history[0]
                    val_accuracy = history[1]

                    pbar.set_postfix({"loss": "%.4f" % val_loss,
                                      "accuracy": "%.4f" % val_accuracy})
                    pbar.update(1)
                history_val_loss.append(val_loss)
                history_val_accuracy.append(val_accuracy)

            print('结束验证!')
            print("验证loss为:%.4f" % val_loss)
            print("验证准确率为:%.4f" % val_accuracy)

在这里插入图片描述

可视化结果

    def plot_loss(x, history):
    plt.plot(x, history['val_loss'], label='val', marker='o')
    plt.plot(x, history['train_loss'], label='train', marker='o')
    plt.title('Loss per epoch')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.legend(), plt.grid()
    plt.savefig('./logs/loss.png')
    plt.show()


def plot_acc(x, history):
    plt.plot(x, history['train_acc'], label='train_acc', marker='x')
    plt.plot(x, history['val_acc'], label='val_acc', marker='x')
    plt.title('Acc per epoch')
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.legend(), plt.grid()
    plt.savefig('./logs/acc.png')
    plt.show()

在这里插入图片描述

总结

  • 效果尚好,但是不如ResNet网络训练的好。
  • 结合VGG与ResNet重新训练,看看效果。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值