LLMs Tokenizer Byte-Pair Encoding(BPE)

1 Byte-Pair Encoding(BPE) 如何构建词典?

  1. 准备足够的训练语料;以及期望的词表大小;
  2. 将单词拆分为字符粒度(字粒度),并在末尾添加后缀“”,统计单词频率
  3. 合并方式:统计每一个连续/相邻字节对的出现频率,将最高频的连续字节对合并为新的子词;
  4. 重复第3步,直到词表达到设定的词表大小;或下一个最高频字节对出现频率为1。

注:GPT2、BART和LLaMA就采用了BPE。

WordPiece 

1 WordPiece 与 BPE 异同点是什么?

本质上还是BPE的思想。与BPE最大区别在于:如何选择两个子词进行合并

  • BPE是选择频次最大的相邻子词合并;
  • WordPiece算法选择 能够提升语言模型概率最大的相邻子词进行合并,来加入词表

注:BERT采用了WordPiece。

SentencePiece 

简单介绍一下 SentencePiece 思路?

把空格也当作一种特殊字符来处理,再用BPE或者来构造词汇表。

注:ChatGLM、BLOOM、PaLM采用了SentencePiece。

对比篇

    举例 介绍一下 不同 大模型LLMs 的分词方式?

    1. 介绍一下 不同 大模型LLMs的分词方式 的区别?

    1. LLaMA的词表是最小的,LLaMA在中英文上的平均token数都是最多的,这意味着LLaMA对中英文分词都会 比较碎,比较细粒度。尤其在中文上平均token数高达1.45,这意味着LLaMA大概率会将中文字符切分为2个 以上的token。
    2. Chinese LLaMA扩展词表后,中文平均token数显著降低,会将一个汉字或两个汉字切分为一个token,提高了中文编码效率。
    3. ChatGLM-6B是平衡中英文分词效果最好的tokenizer。由于词表比较大中文处理时间也有增加
    4. BLOOM虽然是词表最大的,但由于是多语种的,在中英文上分词效率与ChatGLM-6B基本相当。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    AI Echoes

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值