#70. 爬楼梯
类似题目
509. 斐波那契数
746. 使用最小花费爬楼梯
1137. 第 N 个泰波那契数
题目描述
解题思路
典型的斐波那契数列,到第n级台阶可以是从第n-1级走一步上去,也可以是从第n-2级走两步上去,所以可以得到递推关系:
F(n) = F(n-1) + F(n-2)
1、直接递归法(提交会超时)
递归方法很直观,但是重复计算过程太多,提交会超时
public static int climbStairs(int n) {
if(n == 1)
return 1;
else if(n == 2)
return 2;
else
return climbStairs(n-1) + climbStairs(n-2);
}
时间复杂度O(2^n),空间复杂度O(n)
2、记忆化递归法
在上一种方法中,我们计算每一步的结果时出现了冗余。另一种思路是,我们可以把每一步的结果存储在 mem数组之中,每当函数再次被调用,我们就直接从 memo 数组返回结果。
在 memo数组的帮助下,我们得到了一个修复的递归树,其大小减少到 n
public int climbStairs(int n) {
int memo[] = new int[n+1];
return myClimb(n,memo);
}
public int myClimb(int n,int[] memo) {
if(n == 1)
return 1;
if(n == 2)
return 2;
if(memo[n] > 0)
return memo[n];
memo[n] = myClimb(n-1, memo) + myClimb(n-2, memo);
return memo[n];
}
提交结果:
3、动态规划法
public int climbStairs(int n) {
if(n == 1)
return 1;
if(n == 2)
return 2;
int first = 1,second = 2,re = 0;
for (int i = 3; i < n+1; i++) {
re = first + second;
first = second;
second = re;
}
return re;
}
提交结果:
4、通项公式法
public int fib(int N) {
double goldenRatio = (1 + Math.sqrt(5)) / 2;
return (int)Math.round(Math.pow(goldenRatio, N)/Math.sqrt(5));
}