70. 爬楼梯

#70. 爬楼梯

类似题目
509. 斐波那契数
746. 使用最小花费爬楼梯
1137. 第 N 个泰波那契数
题目描述
在这里插入图片描述
解题思路
典型的斐波那契数列,到第n级台阶可以是从第n-1级走一步上去,也可以是从第n-2级走两步上去,所以可以得到递推关系:
F(n) = F(n-1) + F(n-2)
1、直接递归法(提交会超时)
递归方法很直观,但是重复计算过程太多,提交会超时

public static int climbStairs(int n) {
  	if(n == 1)
   		return 1;
  	else if(n == 2)
   		return 2;
  	else 
   		return climbStairs(n-1) + climbStairs(n-2);
   }

时间复杂度O(2^n),空间复杂度O(n)
在这里插入图片描述

2、记忆化递归法
在上一种方法中,我们计算每一步的结果时出现了冗余。另一种思路是,我们可以把每一步的结果存储在 mem数组之中,每当函数再次被调用,我们就直接从 memo 数组返回结果。
在 memo数组的帮助下,我们得到了一个修复的递归树,其大小减少到 n

public int climbStairs(int n) {        
	int memo[] = new int[n+1];        
	return myClimb(n,memo);    
}    
public int myClimb(int n,int[] memo) {        
	if(n == 1)            
		return 1;        
	if(n == 2)            
		return 2;        
	if(memo[n] > 0)            
		return memo[n];        
	memo[n] = myClimb(n-1, memo) + myClimb(n-2, memo);      
	return memo[n];    
}

提交结果:
在这里插入图片描述
3、动态规划法

public int climbStairs(int n) {        
	if(n == 1)            
		return 1;        
	if(n == 2)            
		return 2;        
	int first = 1,second = 2,re = 0;        
	for (int i = 3; i < n+1; i++) {            
		re = first + second;            
		first = second;            
		second = re;        
	}        
	return re;    
}

提交结果:
在这里插入图片描述
4、通项公式法
无

public int fib(int N) {        
	double goldenRatio = (1 + Math.sqrt(5)) / 2;        
	return (int)Math.round(Math.pow(goldenRatio, N)/Math.sqrt(5));    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值