【BZOJ2115】【WC2011】Xor(线性基,图论)

本文介绍了一种解决 BZOJ2115 [WC2011]Xor 问题的有效算法。通过构建从节点1到节点n的路径并计算路径上的权值异或和,结合所有环的权值进行线性基求解,最终得到最大异或和路径。文章详细解释了算法思路,并提供了完整的 C++ 实现代码。

Description

2333

Solution

参考博客:https://www.cnblogs.com/ljh2000-jump/p/5869925.html
很妙的一道题啊
考虑这样做:
先搞出一条从1到n的路径,求出路径上的权值异或和。
然后找出所有环,将环的权值丢进线性基。
然后直接线性基求解。

这样为什么是对的?
发现答案的路径是由路径和环组成的。
如果找出的路径不是最终答案的路径,那么我们会用两条路径圈出的环将它干掉。
然后把所有其他的环根据需要加进去即可。
然后会遇到一个问题,如果你要加进去的环不在路径上怎么办?
容易发现可以从路径的某个位置出发到达环然后绕一圈再原路返回即可。

感觉讲不清楚的样子。。

Source

/************************************************
 * Au: Hany01
 * Date: Mar 16th, 2018
 * Prob: [BZOJ2115][WC2011] Xor
 * Email: hany01@foxmail.com
************************************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define fir first
#define sec second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define ALL(a) (a).begin(), (a).end()
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia

template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int read()
{
    register int _, __; register char c_;
    for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
    for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

inline void File()
{
#ifdef hany01
    freopen("bzoj2115.in", "r", stdin);
    freopen("bzoj2115.out", "w", stdout);
#endif
}

const int maxn = 50005, maxm = 200005;

int n, m, e, v[maxm], nex[maxm], beg[maxn], vis[maxn];
LL w[maxm], a[65], Ans, curans[maxn];

inline void add(int uu, int vv, LL ww) { v[++ e] = vv, w[e] = ww, nex[e] = beg[uu], beg[uu] = e; }

inline void Insert(LL x)
{
    Fordown(i, 61, 0) if (x >> i & 1) {
        if (!a[i]) { a[i] = x; return ; }
        x ^= a[i];
    }
}

void dfs(int u)
{
    vis[u] = 1;
    for (register int i = beg[u]; i; i = nex[i])
        if (vis[v[i]]) Insert(curans[u] ^ w[i] ^ curans[v[i]]);
        else curans[v[i]] = curans[u] ^ w[i], dfs(v[i]);
}

int main()
{
    File();

    int uu, vv; LL ww;
    n = read(), m = read();
    For(i, 1, m)
        uu = read(), vv = read(), scanf("%lld", &ww), add(uu, vv, ww), add(vv, uu, ww);

    dfs(1);
    Ans = curans[n];

    Fordown(i, 61, 0) chkmax(Ans, Ans ^ a[i]);
    printf("%lld\n", Ans);

    return 0;
}
//日暮苍山远,天寒白屋贫。
//    -- 刘长卿《逢雪宿芙蓉山主人》
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值