FFT
Hany01
这个作者很懒,什么都没留下…
展开
-
【AH/HNOI 2017】【BZOJ 4827】 礼物 (FFT,卷积,数学)
Descriptionclick meSolution题目要求的其实就是把{yi}{yi}\{y_i\}移动后的∑i=0n−1(xi−yi+c)∑i=0n−1(xi−yi+c)\sum_{i=0}^{n - 1}(x_i - y_i + c)的最小值,拆开:∑i=0n−1x2i+y2i+c2−2xiyi+2c(xi−yi)∑i=0n−1xi2+yi2+c2−2xiyi+2c(xi−...原创 2017-12-02 15:28:34 · 287 阅读 · 0 评论 -
【Luogu4239】多项式求逆 加强版(多项式求逆,任意模数NTT)
Description多项式求逆,对109+7109+710^9+7取模。Solution将多项式求逆的中的乘法换成任意模数NTT即可。Code/************************************** * Au: Hany01 * Prob: [Luogu4239] 多项式求逆(加强版) * Date: Jul 26th, 201...原创 2018-07-27 14:41:00 · 360 阅读 · 0 评论 -
【LOJ2183】【BZOJ3992】【SDOI2015】序列统计(DP,原根,NTT)
Descriptionhttps://loj.ac/problem/2183Solution我是来复习NTT板子的。。容易得到一个暴力DP方法,设fi,jfi,jf_{i,j}表示到第iii位,当前余数为jjj的方案数。 将其像快速幂一样转移可以将nnn优化成lognlogn\log n。考虑怎么继续优化: 我们发现f[l][k]=∑i×j≡k(modm)f[l−...原创 2018-07-26 21:28:34 · 203 阅读 · 0 评论 -
【COGS2187】帕秋莉的超级多项式
Description求: Solution直接模拟即可。多项式幂次还没有写过,其实很简单,Fk=eklnFFk=eklnFF^k=e^{k\ln F}即可。Code/************************************************ * Au: Hany01 * Date: Jul 30th, 3018 * Pr...原创 2018-07-30 12:12:45 · 309 阅读 · 0 评论 -
【Luogu4726】多项式exp模板
Description给定G(x)G(x)G(x),求F(x)≡eG(x)(modxn)F(x)≡eG(x)(modxn)F(x)\equiv e^{G(x)}\pmod {x^n}。Solution 预备知识:牛顿迭代 求出F(x)F(x)F(x)使得G(F(x))=0(modxn)G(F(x))=0(modxn)G(F(x))=0\pmod {x^n}。 假...原创 2018-07-30 11:21:22 · 262 阅读 · 0 评论 -
【Luogu4238】多项式取Ln模板题
Description多项式取lnln\ln。Solutionlnf(x)=∫f′(x)f−1(x)lnf(x)=∫f′(x)f−1(x)\ln f(x)=\int f'(x)f^{-1}(x)Code/************************************************ * Au: Hany01 * Date: Jul 2...原创 2018-07-28 15:58:07 · 261 阅读 · 0 评论 -
快速数论变换(NTT)板子
原理讲解?反正我这么菜当然只能背板子了。。原理讲解?反正我这么菜当然只能背板子了。。\color{white}{原理讲解?反正我这么菜当然只能背板子了。。}/************************************************ * Au: Hany01 * Date: Feb 23th, 2018 * Prob: [UOJ34] NTT Template *...原创 2018-02-23 21:48:56 · 472 阅读 · 0 评论 -
【BZOJ5093】图的价值(第二类斯特林数,NTT)
Description“简单无向图”是指无重边、无自环的无向图(不一定连通)。 一个带标号的图的价值定义为每个点度数的k次方的和。 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和。 因为答案很大,请对998244353取模输出。Solution容易得到题目就是要求: n×2(n−1)(n−2)2∑i=0n−1(n−1i)ikn×2(n−1)(n−2)2∑i=0n−1...原创 2018-03-24 21:32:26 · 278 阅读 · 0 评论 -
【BZOJ3456】城市规划(图记数,NTT,多项式求逆)
(辣鸡BZOJ又TMTM^{TM}权限题还好有数据233)Description求nnn个点、带标号的无向联通图的数量。Solution设f(n)f(n)f(n)表示nnn个点时的答案;g(n)g(n)g(n)表示不一定联通的图的个数。 显然g(n)=2(n2)=∑i=1n(n−1i−1)f(i)g(n−i)g(n)=2(n2)=∑i=1n(n−1i−1)f(i)g(n−i)...原创 2018-06-10 15:38:46 · 240 阅读 · 0 评论 -
【Luogu4238】多项式求逆模板题
Description给定一个多项式 F(x)F(x)F(x),请求出一个多项式 G(x)G(x)G(x) , 满足 F(x)∗G(x)≡1(modxn)F(x)∗G(x)≡1(modxn)F(x) * G(x) \equiv 1 \pmod {x^n} 。系数对 998244353998244353998244353 取模。Solution设fifif_i满足F(x)∗fi(...原创 2018-06-10 10:57:53 · 244 阅读 · 0 评论 -
【BZOJ5306】【HAOI2018】染色(容斥原理,NTT)
Descriptionclick meSolution直接算不太方便,考虑容斥。 易得容斥系数满足: wt=∑i=0t(ti)fiwt=∑i=0t(ti)fiw_t=\sum_{i=0}^t \binom{t}{i}f_i 其实有了这个式子我们就可以O(m2)O(m2)O(m^2)求出容斥系数了,考虑优化。我们将所有式子都列出来: w0=f0w0=f0w_0=f_0...原创 2018-06-09 14:13:32 · 428 阅读 · 0 评论 -
【BZOJ4259】残缺的字符串(FFT)
Description辣鸡BZOJSolution考虑将子串倒过来,对于每个字符,如果是∗∗*,那么值为000,否则为Ai−96Ai−96A_i-96。 那么我们设f(i)=∑j(Aj−Bi−j)2AjBi−jf(i)=∑j(Aj−Bi−j)2AjBi−jf(i)=\displaystyle\sum_{j}(A_{j}-B_{i-j})^2A_jB_{i-j},如果f(i)f...原创 2018-05-31 13:45:02 · 341 阅读 · 0 评论 -
【BZOJ3160】万径人踪灭(FFT,Manacher)
Descriptionclick me 直接就把pdf的图片放在那里,还不方便复制样例,差评Solution考虑用所有的位置对称的回文子序列的方案数减去回文串的数量,那么题目就变成了两个部分: 1. 回文串的数量直接用Manacher求即可。 2. 回文子序列可以用FFT来求,分别把a、b看做1,然后做FFT求卷积即可。感觉用FFT解决字符串问题也是个套路吧,回文串直接F...原创 2018-03-29 13:20:44 · 216 阅读 · 0 评论 -
【Luogu4238】【模板】任意模数NTT
/************************************************ * Au: Hany01 * Date: May 25th, 2018 * Prob: 任意模数NTT * Email: hany01@foxmail.com************************************************/#include<bit...原创 2018-05-25 21:50:43 · 320 阅读 · 1 评论 -
【BZOJ3513】[MUTC2013] idiots(FFT)
Description给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率。Solution我们考虑用FFT算出bibib_i表示有多少种方案取出两根木棒使得它们的长度不大于iii。 那么我们对于每个木棒,可以求出有多少对木棒的和不大于它的长度,也就是它们不能拼成三角形,然后就是简单记数了。Code/*******************...原创 2018-04-09 11:49:18 · 217 阅读 · 0 评论 -
【BZOJ4555】【TJOI2016&HEOI2016】求和(第二类斯特林数,NTT)
Description给定nnn(n≤100000n≤100000n\le 100000),求: f(n)=∑i=0n∑j=0i{ij}2jj!f(n)=∑i=0n∑j=0i{ij}2jj!f(n)=\sum_{i=0}^{n}\sum_{j=0}^i\begin{Bmatrix}i\\j\end{Bmatrix}2^j j!Solution现在看到这种模数已经不能直接判断要不要用N...原创 2018-03-23 21:04:31 · 219 阅读 · 0 评论 -
快速傅里叶变换(FFT)板子
递归版//UOJ 34//Luogu 3803//By Hany01#include<bits/stdc++.h>#define For(i ,j , k) for (int i = (j) ; i <= (k) ; ++ i)#ifdef hany01 #define debug(...) fprintf(stderr , __VA_ARGS__)#...原创 2017-11-28 19:45:27 · 363 阅读 · 0 评论 -
【ZJOI2014】【BZOJ3527】 力 (FFT)
Description给出序列{qi}\{q_i\},求Ei=∑j<iqj(i−j)2−∑j>iqj(i−j)2E_i = \sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}Solution考虑: 令t=n−it = n - i , pn−i=qip_{n - i} = q_i Ei=∑j=1i−1qjgi−j−∑j=i+1nq原创 2017-11-28 22:10:48 · 328 阅读 · 0 评论 -
【BZOJ3625】【CF438E】【多项式开方模板题】小朋友和二叉树
Description我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树。 考虑一个含有n个互异正整数的序列c[1],c[2],…,c[n]。如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],…,c[n]}中,我们的小朋友就会将其称作神犇的。并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和。 给出一个整数m,你能对于任意的s(1&amp;amp;amp;lt;=s&amp;amp;amp;lt;=m)计算出权...原创 2018-07-27 23:44:04 · 322 阅读 · 0 评论