tarjan求强连通分量模板

在有向图中,如果两个顶点间至少存在一条路径,称两个顶点强连通。

如果有向图G的每两个顶点都强连通,称G是一个强连通图。

非强连通图有向图的极大强连通子图,称为强连通分量。


而用tarjan算法可以起求出各个强连通分量,然后再把强连通分量缩成一个点,非强连通图就被转换成一个

DAG,去多问题都是在此基础上求解。

以下是模板:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack>
using namespace std;
#define maxn 10010
vector <int> G[maxn];
int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
//scc_cnt为SCC的计数器,sccno[i]为i所在SCC的编号
stack <int> S;
int out0[maxn];
void dfs(int u)
{
    pre[u]=lowlink[u]=++dfs_clock;
    S.push(u);
    for(int i = 0; i < G[u].size(); i++)
    {
        int v=G[u][i];
        if(!pre[v]) //如果没有访问则访问
        {
            dfs(v);
            lowlink[u]=min(lowlink[u],lowlink[v]);
        }else if(!sccno[v]) //如果访问了且在栈中
            lowlink[u]=min(lowlink[u],pre[v]);
    }
    if(lowlink[u]==pre[u])
    {
        scc_cnt++;
        while(1)
        {
            int x=S.top(); S.pop();
            sccno[x]=scc_cnt;
            if(x==u)break;
        }
    }
}
void find_scc(int n)
{
    dfs_clock=scc_cnt=0;
    memset(sccno,0,sizeof(sccno));
    memset(pre,0,sizeof(pre));
    for(int i = 1; i <= n; i++)if(!pre[i])dfs(i);//节点编号从1开始
}
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        for(int i = 0; i <= n; i++)G[i].clear();
        for(int i = 0; i < m; i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            G[a].push_back(b);
        }
        find_scc(n);

        if(scc_cnt==1)
        {
            printf("%d\n",n);
            continue;
        }
        memset(out0,0,sizeof(out0));
        for(int u = 1; u <= n; u++)
        for(int i = 0; i < G[u].size(); i++)
        {
            int v = G[u][i];
            if(sccno[u]!=sccno[v])
                out0[sccno[u]]++;
        }
        int a=0,id;
        for(int i = 1; i <= scc_cnt; i++)
            if(out0[i]==0){a++;id=i;}
        if(a==1)
        {
            int ans = 0;
            for(int i = 1; i <= n; i++)
                if(sccno[i]==id)ans++;
            printf("%d\n",ans);
        }
        else
        {
            printf("0\n");
        }
    }
    return 0;
}


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页