20200510 分布式锁的几种实现

分布式锁

很久之前有讲过并发编程中的锁并发编程的锁机制:synchronized和lock。在单进程的系统中,当存在多个线程可以同时改变某个变量时,就需要对变量或代码块做同步,使其在修改这种变量时能够线性执行消除并发修改变量。而同步的本质是通过锁来实现的。为了实现多个线程在一个时刻同一个代码块只能有一个线程可执行,那么需要在某个地方做个标记,这个标记必须每个线程都能看到,当标记不存在时可以设置该标记,其余后续线程发现已经有标记了则等待拥有标记的线程结束同步代码块取消标记后再去尝试设置标记。

分布式环境下,数据一致性问题一直是一个比较重要的话题,而又不同于单进程的情况。分布式与单机情况下最大的不同在于其不是多线程而是多进程。多线程由于可以共享堆内存,因此可以简单的采取内存作为标记存储位置。而进程之间甚至可能都不在同一台物理机上,因此需要将标记存储在一个所有进程都能看到的地方。

常见的是秒杀场景,订单服务部署了多个实例。如秒杀商品有4个,第一个用户购买3个,第二个用户购买2个,理想状态下第一个用户能购买成功,第二个用户提示购买失败,反之亦可。而实际可能出现的情况是,两个用户都得到库存为4,第一个用户买到了3个,更新库存之前,第二个用户下了2个商品的订单,更新库存为2,导致出错。

在上面的场景中,商品的库存是共享变量,面对高并发情形,需要保证对资源的访问互斥。在单机环境中,Java中其实提供了很多并发处理相关的API,但是这些API在分布式场景中就无能为力了。也就是说单纯的Java Api并不能提供分布式锁的能力。分布式系统中,由于分布式系统的分布性,即多线程和多进程并且分布在不同机器中,synchronized和lock这两种锁将失去原有锁的效果,需要我们自己实现分布式锁。

常见的锁方案如下:

  • 基于数据库实现分布式锁
  • 基于缓存,实现分布式锁,如redis
  • 基于Zookeeper实现分布式锁

下面我们简单介绍下这几种锁的实现。

基于数据库

基于数据库的锁实现也有两种方式,一是基于数据库表,另一种是基于数据库排他锁。

基于数据库表的增删

基于数据库表增删是最简单的方式,首先创建一张锁的表主要包含下列字段:方法名,时间戳等字段。

具体使用的方法,当需要锁住某个方法时,往该表中插入一条相关的记录。这边需要注意,方法名是有唯一性约束的,如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。

执行完毕,需要delete该记录。

当然,笔者这边只是简单介绍一下。对于上述方案可以进行优化,如应用主从数据库,数据之间双向同步。一旦挂掉快速切换到备库上;做一个定时任务,每隔一定时间把数据库中的超时数据清理一遍;使用while循环,直到insert成功再返回成功,虽然并不推荐这样做;还可以记录当前获得锁的机器的主机信息和线程信息,那么下次再获取锁的时候先查询数据库,如果当前机器的主机信息和线程信息在数据库可以查到的话,直接把锁分配给他就可以了,实现可重入锁。

基于数据库排他锁

我们还可以通过数据库的排他锁来实现分布式锁。基于MySql的InnoDB引擎,可以使用以下方法来实现加锁操作:

public void lock(){
    connection.setAutoCommit(false)
    int count = 0;
    while(count < 4){
        try{
            select * from lock where lock_name=xxx for update;
            if(结果不为空){
                //代表获取到锁
                return;
            }
        }catch(Exception e){
        }
        //为空或者抛异常的话都表示没有获取到锁
        sleep(1000);
        count++;
    }
    throw new LockException();
}

在查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁。当某条记录被加上排他锁之后,其他线程无法再在该行记录上增加排他锁。其他没有获取到锁的就会阻塞在上述select语句上,可能的结果有2种,在超时之前获取到了锁,在超时之前仍未获取到锁。

获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,释放锁connection.commit()

存在的问题主要是性能不高和sql超时的异常。

基于数据库锁的优缺点

上面两种方式都是依赖数据库的一张表,一种是通过表中的记录的存在情况确定当前是否有锁存在,另外一种是通过数据库的排他锁来实现分布式锁。

  • 优点是直接借助数据库,简单容易理解。
  • 缺点是操作数据库需要一定的开销,性能问题需要考虑。

 

基于Zookeeper

基于zookeeper临时有序节点可以实现的分布式锁。每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。

提供的第三方库有curator,具体使用读者可以自行去看一下。Curator提供的InterProcessMutex是分布式锁的实现。acquire方法获取锁,release方法释放锁。另外,锁释放、阻塞锁、可重入锁等问题都可以有有效解决。讲下阻塞锁的实现,客户端可以通过在ZK中创建顺序节点,并且在节点上绑定监听器,一旦节点有变化,Zookeeper会通知客户端,客户端可以检查自己创建的节点是不是当前所有节点中序号最小的,如果是就获取到锁,便可以执行业务逻辑。

最后,Zookeeper实现的分布式锁其实存在一个缺点,那就是性能上可能并没有缓存服务那么高。因为每次在创建锁和释放锁的过程中,都要动态创建、销毁瞬时节点来实现锁功能。ZK中创建和删除节点只能通过Leader服务器来执行,然后将数据同不到所有的Follower机器上。并发问题,可能存在网络抖动,客户端和ZK集群的session连接断了,zk集群以为客户端挂了,就会删除临时节点,这时候其他客户端就可以获取到分布式锁了。

 

 

基于缓存

相对于基于数据库实现分布式锁的方案来说,基于缓存来实现在性能方面会表现的更好一点,存取速度快很多。而且很多缓存是可以集群部署的,可以解决单点问题。基于缓存的锁有好几种,如memcached、redis、本文下面主要讲解基于redis的分布式实现。

 

我们在系统中修改已有数据时,需要先读取,然后进行修改保存,此时很容易遇到并发问题。由于修改和保存不是原子操作,在并发场景下,部分对数据的操作可能会丢失。在单服务器系统我们常用本地锁来避免并发带来的问题,然而,当服务采用集群方式部署时,本地锁无法在多个服务器之间生效,这时候保证数据的一致性就需要分布式锁来实现。

 

二、实现

Redis 锁主要利用 Redis 的 setnx 命令。

  • 加锁命令:SETNX key value,当键不存在时,对键进行设置操作并返回成功,否则返回失败。KEY 是锁的唯一标识,一般按业务来决定命名。
  • 解锁命令:DEL key,通过删除键值对释放锁,以便其他线程可以通过 SETNX 命令来获取锁。
  • 锁超时:EXPIRE key timeout, 设置 key 的超时时间,以保证即使锁没有被显式释放,锁也可以在一定时间后自动释放,避免资源被永远锁住。

则加锁解锁伪代码如下:

 

if (setnx(key, 1) == 1){
    expire(key, 30)
    try {
        //TODO 业务逻辑
    } finally {
        del(key)
    }
}
  

上述锁实现方式存在一些问题:

1. SETNX 和 EXPIRE 非原子性

如果 SETNX 成功,在设置锁超时时间后,服务器挂掉、重启或网络问题等,导致 EXPIRE 命令没有执行,锁没有设置超时时间变成死锁。

 

通过在 value 中设置当前线程加锁的标识,在删除之前验证 key 对应的 value 判断锁是否是当前线程持有。可生成一个 UUID 标识当前线程,使用 lua 脚本做验证标识和解锁操作。

// 加锁
String uuid = UUID.randomUUID().toString().replaceAll("-","");
SET key uuid NX EX 30
// 解锁
if (redis.call('get', KEYS[1]) == ARGV[1])
    then return redis.call('del', KEYS[1])
else return 0
end
  

3. 超时解锁导致并发

如果线程 A 成功获取锁并设置过期时间 30 秒,但线程 A 执行时间超过了 30 秒,锁过期自动释放,此时线程 B 获取到了锁,线程 A 和线程 B 并发执行。

 

三、集群

1. 主备切换

为了保证 Redis 的可用性,一般采用主从方式部署。主从数据同步有异步和同步两种方式,Redis 将指令记录在本地内存 buffer 中,然后异步将 buffer 中的指令同步到从节点,从节点一边执行同步的指令流来达到和主节点一致的状态,一边向主节点反馈同步情况。

在包含主从模式的集群部署方式中,当主节点挂掉时,从节点会取而代之,但客户端无明显感知。当客户端 A 成功加锁,指令还未同步,此时主节点挂掉,从节点提升为主节点,新的主节点没有锁的数据,当客户端 B 加锁时就会成功。

 

2. 集群脑裂

集群脑裂指因为网络问题,导致 Redis master 节点跟 slave 节点和 sentinel 集群处于不同的网络分区,因为 sentinel 集群无法感知到 master 的存在,所以将 slave 节点提升为 master 节点,此时存在两个不同的 master 节点。Redis Cluster 集群部署方式同理。

当不同的客户端连接不同的 master 节点时,两个客户端可以同时拥有同一把锁。如下:

 

四、结语

Redis 以其高性能著称,但使用其实现分布式锁来解决并发仍存在一些困难。Redis 分布式锁只能作为一种缓解并发的手段,如果要完全解决并发问题,仍需要数据库的防并发手段。

参考:

1.“Redis 分布式锁的正确实现方式( Java 版 )” https://mp.weixin.qq.com/s/qJK61ew0kCExvXrqb7-RSg
2.“漫画:什么是分布式锁?” https://mp.weixin.qq.com/s/8fdBKAyHZrfHmSajXT_dnA
3.“搞懂“分布式锁”,看这篇文章就对了” https://mp.weixin.qq.com/s/hoZB0wdwXfG3ECKlzjtPdw
4.《Redis 深度历险:核心原理与应用实践》
5.《逆流而上:阿里巴巴技术成长之路》

 

 

总结

本文主要讲解了基于redis分布式锁的实现,在分布式环境下,数据一致性问题一直是一个比较重要的话题,而synchronized和lock锁在分布式环境已经失去了作用。常见的锁的方案有基于数据库实现分布式锁、基于缓存实现分布式锁、基于Zookeeper实现分布式锁,简单介绍了每种锁的实现特点;然后,文中探索了一下redis锁的实现方案;最后,本文给出了基于Java实现的redis分布式锁,读者可以自行验证一下。

参考

  1. 分布式锁的一点理解
  2. 分布式锁1 Java常用技术方案
  3. 分布式锁的几种实现方式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值