16个硬币,保证自己赢的策略?

16个硬币,A和B轮流拿走一些,每次拿走的个数只能是1,2,4中的一个数。
谁最后拿硬币谁输。问:A或B有无策略保证自己赢?

假设都很聪明
=====================================================================================
剩余 1,4,7,10,13,16 时
先拿者必输(对方足够聪明)
先名词解释下:
死棋--到你取时,如果局面是该状态,你必死(对手足够聪明)
杀棋--指这是你可以通过取1/2/4个来致对手于死棋的局面
用逆推:如下
N:  局面:
1  死棋--到你时还剩1个,你必死
2  杀棋--指这是你可以通过取1个来致对手于死棋的局面
3  杀
4  死  
5  杀
6  杀
7  死
8  杀
9  杀
10  死
11  杀
12  杀
13  死
14  杀
15  杀
16  死--谁先拿,谁找死
=================================================================================
和you(游客)说的一样:“1+3N先拿会输(N为非负整数),别的先拿会胜”
如果剩2个,谁先拿谁赢(拿1个)
如果剩3个,谁先拿谁赢(拿2个)
如果剩4个,谁先拿谁输
如果剩5个,谁先拿谁赢
如果剩6个,谁先拿谁赢
如果剩7个,谁先拿谁输
如果剩8个,谁先拿谁赢
如果剩9个,谁先拿谁赢
如果剩10个,谁先拿谁输
如果剩11个,谁先拿谁赢
如果剩12个,谁先拿谁赢
如果剩13个,谁先拿谁输
如果剩14个,谁先拿谁赢
如果剩15个,谁先拿谁赢
如果剩16个,谁先拿谁输
所以策略就是后拿. 以后每一步都不用当心,因为他们非常聪明,不会犯错.
 =================================================================================
首先拿的人肯定能赢,
他们都很聪明,如果后拿能赢,谁去拿呢?
假设a先拿,a拿走1个或者4个,以后每次a都有方案保证自己能赢.(他们都很聪明,如果后拿能赢,谁去拿呢?)写出来比较多,
如果剩3个,谁先拿谁输(简单)
如果剩5个,谁先拿谁赢(简单)
如果剩6个,谁先拿谁输(简单)
如果剩7个,谁先拿谁赢(拿走4个,剩3个)
如果剩8个,谁先拿谁赢(拿走2个,后面那个就得从6个里面挑)
如果剩9个,谁先拿谁输(拿走1个,剩8个,拿走2个剩7个,拿走4个剩5个)
如果剩10个,谁先拿谁赢(拿走1个,让后面的人从9个里面挑,后面的人必输)
如果剩11个,谁先拿谁赢(拿走2个,让后面的人从9个里面挑,后面的人必输)
如果剩12个,谁先拿谁输(拿走1个剩11个,拿走2个剩10 个,拿走4个剩8个)
如果剩13个,谁先拿谁赢(拿走1个,让后面那个人从12个里面挑,后面的人必输)
如果剩14个,谁先拿谁赢(拿走2个,让后面那个人从12个里面挑,后面的人必输)
如果剩15个,谁先拿谁输(拿走1个,剩14,拿走两个剩13,拿走4个剩11,都是让后面人赢)
如果剩16个,谁先拿谁赢(拿走1个,后面那个人从15个里面挑必输;拿走4个,后面那个人就得从12个里面挑,后面的人必输)
所以答案就是先拿,并且拿1个或者4个(前提是他们都很聪明,当你质疑答案的时候先想想这个前提)
欢迎指正。剩3,6 9 12 15时,谁先拿谁就会输。应该有简单的方法。
剩2个时,取1个必胜;
剩3个时,取2个必胜;
剩4个时,如果对手足够聪明则必败;
剩5个时,去1个必胜...
记作 2(1) 3(2) 4(x) 5(1) 6(2) 7(x) 8(1) ...
从中找出规律:
当剩余个数K=3N-2,N为自然数时,只要对手足够聪明则必败.
当K=3N-1时,有必胜策略: 取1个;
当K=3N时,有必胜策略:取2个;
所以,当16个时,后取者有必胜策略.
=====================================================================
先拿者必赢,只要他将硬币数保持为3的倍数即可.
假设当前硬币数为3的倍数,且轮到B拿硬币。注意到无论B怎样拿,都无法使硬币数成为3的倍数;而A总是可以。
这个答案缺乏推理过程:( 不知能否有哪位高手给出形式化的数学模型和解答公式?
===============================================================================
先拿者必输!
我花个半个小时才想出来
我大学读法律,没学过数学,所以我数学只到高中水平,我来给模式,你们一看就懂的
第1组:1
第2组:2,3,4
第3组:5,6,7
第4组:8,9,10
第5组:11,12,13
第6组:14,15,16
假设A先B后,从第6组开始拿
第一种情况:A先拿第6组中的1个或2个,B就拿第6组中剩下的,那么第5组硬币就是A先拿
第二中情况:A拿4个,B就拿第5组和第6组中剩下的2个,那么第4组硬币就又是A先拿(注意:A拿4个,代表第5组硬币也是A先拿的)
大家可以看出来了,不管A怎么拿,B只要把本组剩下的硬币拿走就可以了,这样A同志只好乖乖地做每组硬币的“先驱者”,所以第一组的最后一个硬币只好让A同志“先驱”了,即A输!
 
========================================================================================
所以后拿者B的对策就是:
A先拿1个,B就拿2个
A先拿2个,B就拿1个
A先拿4个,B就拿2个
这样,A就输了
=========================================================================================
这个比较简单,用了五分钟就出来了:先从1开始,如果谁拿时只剩下1就输了,所以任何数字只要减去1,2,4中任何一个得1,就可以胜,
所以,2,3,5先拿是可以胜的,但4不行(全拿不可以,其他拿法对方再拿一次就成1了),所以任何数减去1,2,4得4,到某人拿时剩下这个
数就会胜(与1同理),所以,5,6,8会胜,这样7就会输(同4,怎么拿,对方再拿一次,不是变4就是变1)------
这个数列列出来就很简单了:
先拿会胜的:2,3,5,6,8,9,11,12,14,15------
先拿会输的:1,4,7,10,13,16------
也就是说,1+3N先拿会输(N为非负整数),别的先拿会胜.
=========================================================================================
A无必胜策略
A拿1,4,B就拿2
A拿2,B就拿1
于是B总能抢到3,6,9,12,15的全部或部分,A却永远没有机会
由于上限是16,因此15只能由B抢到,此时A就输了
 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值