hadoop正式学习---hadoop

一:课程结构

  


二:hadoop是什么

  hadoop是适合大数据的分布式存储与计算的平台


三:数据的分布式存储


四:hadoop中的概念

  在分布式存储系统中,分散在不同节点中的数据可能属于同一个文件,为了组织众多的文件,把文件可以放到不同的文件夹中,文件夹可以一级一级的包含。我们把这种组织形式称为命名空间(namespace)。命名空间管理着整个服务器集群中的所有文件。
        
       集群中不同的节点承担不同的职责。负责命名空间职责的节点称为主节点(master node),负责存储真实数据职责的节点称为从节点(slave node)。主节点负责管理文件系统的文件结构,从节点负责存储真实的数据,称为主从式结构(master-slaves)。用户操作时,应该先和主节点打交道,查询数据在哪些从节点上存储,然后再从从节点读取。在主节点,为了加快用户访问的速度,会把整个命名空间信息都放在内存中,当存储的文件越多时,那么主节点就需要越多的内存空间。在从节点存储数据时,有的原始数据文件可能很大,有的可能很小,大小不一的文件不容易管理,那么可以抽象出一个独立的存储文件单位,称为块(block)。数据存放在集群中,可能因为网络原因或者节点硬件原因造成访问失败,最好采用副本(replication)机制,把数据同时备份到多台节点中,这样数据就安全了,数据丢失或者访问失败的概率就小了。


五:hdfs2的架构

负责数据的分布式存储

主从结构
主节点,可以有2个: namenode
从节点,有很多个: datanode

namenode负责:
接收用户操作请求,是用户操作的入口
维护文件系统的目录结构,称作命名空间

datanode负责:
存储文件

六:yarn的架构

资源的调度和管理平台

主从结构
主节点,可以有2个: ResourceManager
从节点,有很多个: NodeManager

ResourceManager负责:
集群资源的分配与调度
MapReduce、Storm、Spark等应用,必须实现ApplicationMaster接口,才能被RM管理

NodeManager负责:
单节点资源的管理

七:mapreduce的架构

依赖磁盘io的批处理计算模型

主从结构
主节点,只有一个: MRAppMaster
MRAppMaster负责:
接收客户提交的计算任务
把计算任务分给TaskTrackers执行,即任务调度
监控TaskTracker的执行情况 

八:hadoop的特点

扩容能力(Scalable):能可靠地(reliably)存储和处理千兆字节(PB)数据。
成本低(Economical):可以通过普通机器组成的服务器群来分发以及处理数据。这些服务器群总计可达数千个节点。
高效率(Efficient):通过分发数据,hadoop可以在数据所在的节点上并行地(parallel)处理它们,这使得处理非常的快速。
可靠性(Reliable):hadoop能自动地维护数据的多份副本,并且在任务失败后能自动地重新部署(redeploy)计算任务。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值