17、Oracle Cloud Infrastructure 对象存储使用指南

Oracle Cloud Infrastructure 对象存储使用指南

Oracle Cloud Infrastructure 对象存储使用指南

1. 区域与跨区域传输

Oracle Cloud Infrastructure 的对象存储是按区域划分的,这意味着特定的存储桶及其存储的对象都位于该存储桶最初创建的区域。若需要将对象跨区域传输到另一个不同区域的存储桶,可以使用支持此操作的 API。

2. 存储桶的类型与访问方式

存储对象的存储桶分为公共和私有两种。为保护数据,多数情况下会使用私有存储桶,但也可随时创建公共存储桶。私有存储桶中的对象有两种经过身份验证的访问方式:
- IAM 用户
- 实例主体

此外,还可以通过预认证请求,让未经过身份验证的客户端在给定时间段内访问私有存储桶中的特定对象,任何知道链接的人都能访问该对象。

3. 操作前的准备

在进行后续操作前,需确保之前创建的两个用户(sandbox - admin 和 sandbox - user)、两个对应组(sandbox - admins 和 sandbox - users)以及在根分区中创建的 IAM 策略(sandbox - admins - policy)仍然存在。该策略授予了 sandbox - admins 组对 Sandbox 分区的完全管理权限,策略语句如下:

allow group sandbox - admins to manage all - resources in compartment Sandbox
4. 对象存储的基本操作

内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值