YOLOv5
文章平均质量分 92
hhh__xmr__
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLOv5 (3) RK3568推理环境搭建
第二章节通过我们的不断训练,在模型训练完成后,将 ONNX 模型转换为RKNN模型( RKNN 模型已经被编译进了 pt 权重文件),RKNN 模型是设备运行的最终模型文件,用于最新图片推理。本人的设备是一个基于嵌入式 Linux 系统的开发板( MYIR 核心模块),以下是设备的具体信息:NAME=(轻量级嵌入式 Linux 生成工具)那么在 RK3568 设备上如何使用 RKNN 模型来推理验证新的图片或者视频呢?原创 2025-08-11 14:46:28 · 1765 阅读 · 0 评论 -
YOLOv5 (2) 训练模型指导
上一篇文章我们已经部署了环境,接下来我们就要开始进行模型训练了自定义训练。原创 2025-08-06 19:47:39 · 2104 阅读 · 0 评论 -
YOLOv5 (1) 训练环境搭建
最近在研究车辆老化测试,发现在检测过程中强依赖于人工记录,所以为了我想到使用来分析车辆老化测试(如开关车门)和车座舱域变化(如座椅调整、内饰件装配、车机页面变化):YOLOv5 是一种单阶段目标检测算法,推理速度快(在嵌入式设备上可达 30 FPS),能够实时监控车门开关状态或座舱内物体变化。:传统人工检查效率低且易疲劳,YOLOv5 可自动识别车门是否完全闭合、座椅位置是否正确,提高检测一致性。:YOLOv5 结合数据增强(如直方图均衡化)可应对老化测试中不同光照条件下的检测需求。原创 2025-08-06 10:56:20 · 1978 阅读 · 0 评论
分享