DP进阶用法

动态规划(Dynamic Programming,简称DP)在高级应用中可以解决更复杂的问题。本文将介绍一些DP高级用法的示例:
1. 背包问题的变种

背包问题是动态规划中经典的问题之一,有多种变种形式。除了01背包问题(每个物品要么选取要么不选取),还有完全背包问题(每个物品可以重复选取)、多重背包问题(每个物品选取次数有限制)等,在上一篇文章中我做过讲解。

这些背包问题的解决方案通常在状态转移方程上有所不同。对于完全背包问题,状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i][j-w[i]] + v[i]),其中w[i]v[i]分别表示第i个物品的重量和价值。

在变种问题中,我们需要考虑v和w分别代表什么,还需要考虑初始条件、状态及转移方程。

2. 最长递增子序列

最长递增子序列(Longest Increasing Subsequence,简称LIS)是另一种常见的DP问题。给定一个序列,找到其中的最长递增或严格递增子序列的长度。

使用动态规划来解决LIS问题时,可以定义状态dp[i]表示以第i个元素结尾的最长递增子序列的长度。状态转移方程可以表示为:dp[i] = max(dp[j] + 1, dp[i]),其中j < i且a[j] < a[i](或a[j]<=a[i])。最后取1到n结尾的dp数组元素的最大值。

3. 最大子序列和

最大子序列和(Maximum Subarray Sum)是求解一个数组中连续子序列的和的最大值。这也是一个常见的DP问题。

使用动态规划来解决最大子序列和问题时,可以定义状态dp[i]表示以第i个元素结尾的最大子序列和。状态转移方程可以表示为:dp[i] = max(a[i], dp[i-1] + a[i]),其中a[i]表示第i个元素的值。最后也需要取1到n的dp数组元素最大值。

4. 最长公共子序列

最长公共子序列(Longest Common Subsequence,简称LCS)是用于比较两个序列相似性的问题。给定两个序列,找到它们之间的最长公共子序列的长度。

使用动态规划来解决LCS问题时,可以定义状态dp[i][j]表示序列A的前i个元素和序列B的前j个元素之间的最长公共子序列的长度。状态转移方程可以表示为如下形式:

if (A[i] == B[j])
    dp[i][j] = dp[i-1][j-1] + 1;//如果当前两个元素相等,那么i,j同时退一位,并且长度加1
else
    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);//如果不相等,那么取i退位和j退位的最大值

最后答案就是dp[n][m](n为a数组长度,m为b数组长度)

以上只是动态规划在高级应用中的一些示例,实际应用中可能存在更多复杂的问题和解决方案。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值