二分法真的是说起来容易,做出来要命。概念就是一个有序的数列不断通过折半的方法找到所要求的数,因为不断对半,比一次查找在效率上快乐许多,二分法的思想是更快的一种找到符合答案的方法,举个例子就是在1到1000000里找个数使其符合一定条件,若是依次枚举,跑不了超时了,所以就通过对半查找的方法,也就是枚举法,通过每一次举例,都能将正确值的范围减半,1到1000000也不过是列举二十次,大大提高了枚举效率。
uva714和poj1064有着异曲同工之妙,品,细品。这两道题都应该去想到找出这个可能的答案,那么在众多的数中找到答案,就是二分了,这里的二分不再是找值了,而是找最优解。通过每一次判定,来断定,最优的区间在哪一段,从而找出最优解。二分法最开始定区间有的讲究,不过不难,对于题的理解后,很容易根据输入得到区间或是直接根据题意就定出来一个死的闭区间。之后就是不断的循环,循环的框架基本一致,之后对于区间的折半很重要,根据题意去确定哪种情况区间如何折半,这个一定要准,不然肯定凉了。这个折半的判断与题目的结合尤为重要,各种情况各种判断,不同的折半。直到找出唯一的最优解,就是这样。
本人poj714做法,二分法的实现以及与题意结合的每一个细节(输出的表达,各种情况以及返回值的不同,题意中多解的情况)都不能出错。就题实现二分法的亿点点细节都不能出错。
uva 714
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
long long int s[505];
int m,k;
int a1[505];
int a2[505];
int dinary(long long int ma)
{
memset(a1,0,sizeof(a1));
long long int sum=0;
int j=0;
for(int i=0;i<m;i++){
if(s[i]>ma) return 0;
}
for(int i=m-1;i>=0;i--){
sum+=s[i];
if(sum>ma){
j++;
a1[i]=1;
sum=s[i];
}
}
if(j<=k-1){
memset(a2,0,sizeof(a2));
for(int i=0;i<=500;i++){
a2[i]=a1[i];
}
int i=0;
for(;j<k-1&&i<m;){
if(a2[i]!=1){
a2[i]=1;
j++;
}
i++;
}
return 1;
}
else return 0;
}
int main()
{
int n;
cin>>n;
while(n--){
cin>>m>>k;
long long int e=0;
for(int i=0;i<m;i++){
cin>>s[i];
e+=s[i];
}
long long int b=1,mid;
while(b<e){
mid=(b+e)/2;
if(dinary(mid)==1){
e=mid;
}
else{
b=mid+1;
}
}
printf("%d",s[0]);
if(a2[0]==1) printf(" /");
for(int i=1;i<m;i++){
printf(" %d",s[i]);
if(a2[i]==1){
printf(" /");
}
}
printf("\n");
}
return 0;
}