ZOJ 3822 Domination【概率DP】

题目链接

题意:有个n*m的棋盘,每次在其中随机选一个位置放一个棋子,问期望次数是多少次之后,棋盘上的每行每列至少都要有一个棋子。

令dp[i][j][k]表示放了k个棋子后有i行和j列上至少有一个棋子的概率(注意不是1到i行和1到j列),每次放一个新的棋子对原来状态的影响只有四种可能:1. 没有影响。2. 多出新的一行满足要求。3. 多出新的一列满足要求。4. 多出新的一行一列满足要求。

状态转移方程分别是:

1. dp[i][j][k] += dp[i - 1][j][k - 1] * (n - i + 1) * j / (n * m - k + 1)                   

2. dp[i][j][k] += dp[i][j - 1][k - 1] * (m - j + 1) * i / (n * m - k + 1)

3. dp[i][j][k] += dp[i - 1][j - 1][k - 1] * (n - i + 1) * (m - j + 1) / (n * m - k + 1)

4. dp[i][j][k] += dp[i][j][k - 1] * (i * j - k + 1) / (n * m - k + 1)

求出的是放了k个棋子之后满足要求的概率,而最后求的是数学期望,也就是说要满足放k个棋子之后正好满足要求的概率。因此要减去k-1的概率。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int T;
int n, m;
double dp[55][55][55 * 55];
int main()
{
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d %d", &n, &m);
        memset(dp, 0, sizeof(dp));
        dp[0][0][0] = 1;
        double ans = 0;
        for (int k = 1; k <= n * m; k++)
        {
            for (int i = 1; i <= n; i++)
            {
                for (int j = 1; j <= m; j++)
                {
                    dp[i][j][k] += dp[i - 1][j][k - 1] * (n - i + 1) * j / (n * m - k + 1);
                    dp[i][j][k] += dp[i][j - 1][k - 1] * (m - j + 1) * i / (n * m - k + 1);
                    dp[i][j][k] += dp[i - 1][j - 1][k - 1] * (n - i + 1) * (m - j + 1) / (n * m - k + 1);
                    dp[i][j][k] += dp[i][j][k - 1] * (i * j - k + 1) / (n * m - k + 1);
                }
            }
        }
        for (int k = 1; k <= n * m; k++)
        {
            // cout << dp[n][m][k] << endl;
            ans += k * (dp[n][m][k] - dp[n][m][k - 1]);
        }
        printf("%.12f\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值