POJ 3449 Geometric Shapes【计算几何+判线段相交】

题目链接

题意:有一堆多边形,问每个多边形和哪些其他多边形相交。

讲道理是个水题……就是输入输出麻烦了点,中间判下线段相交就行。

线段相交的模板:

// 判断一个数是否为0
bool zero(double x){
    if (fabs(x)<eps)    return true;
    else    return false;
}

// 求矢量p0->p1, p0->p2的叉积
double xmult(Point p1,Point p2,Point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); 
}

// 判点是否在线段上,包括端点
int dot_online_in(Point p,Line l){ 
    return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps;
}

//判两点在线段同侧,点在线段上返回0
int same_side(Point p1,Point p2,Line l){
    return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps; 
}

// 判两点在线段异侧
int opposite_side(Point p1,Point p2,Line l){
    return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps; 
}

// 判线段相交,包括端点和部分重合
int intersect_in(Line u,Line v){ 
    if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
        return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u); 
    return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u); 
}

// 判线段相交,不包括端点和部分重合
int intersect_ex(Line u,Line v){ 
    return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u); 
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define ll long long
#define zero(x) (((x)>0?(x):-(x))<eps)
const double eps=1e-8;

char ch;

struct Point{
    double x,y;
};

struct Shape{
    string kind;
    int n;
    Point point[30];
    int cnt;
    int intersect[30];
}shape[30];

bool vis[30];

double xmult(Point p1,Point p2,Point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); 
}

int dots_inline(Point p1,Point p2,Point p3){
    return zero(xmult(p1,p2,p3));
}

int dot_online_in(Point p,Point p1,Point p2){ 
    return zero(xmult(p,p1,p2))&&(p1.x-p.x)*(p2.x-p.x)<eps&&(p1.y-p.y)*(p2.y-p.y)<eps;
}

int same_side(Point p1,Point p2,Point p3,Point p4){
    return xmult(p3,p1,p4)*xmult(p3,p2,p4)>eps; 
}

int intersect_in(Point p1,Point p2,Point p3,Point p4){ 
    if (!dots_inline(p1,p2,p3)||!dots_inline(p1,p2,p4))
        return !same_side(p1,p2,p3,p4)&&!same_side(p3,p4,p1,p2); 
    return dot_online_in(p1,p3,p4)||dot_online_in(p2,p3,p4)||dot_online_in(p3,p1,p2)||dot_online_in(p4,p1,p2); 
}

void input(int id,string ss){
    if (ss=="square"){
        shape[id].n=4;
        getchar();
        scanf("%lf,%lf",&shape[id].point[1].x,&shape[id].point[1].y);
        getchar();
        getchar();
        getchar();
        scanf("%lf,%lf",&shape[id].point[3].x,&shape[id].point[3].y);
        getchar();
        getchar();
        double x1,y1,x2,y2,x3,y3,x4,y4;
        x1=shape[id].point[1].x;
        y1=shape[id].point[1].y;
        x3=shape[id].point[3].x;
        y3=shape[id].point[3].y;
        x2=(x1+x3+y3-y1)/2;
        x4=(x1+x3+y1-y3)/2;
        y2=(y1+y3+x1-x3)/2;
        y4=(y1+y3-x1+x3)/2;
        shape[id].point[2].x=x2;
        shape[id].point[2].y=y2;
        shape[id].point[4].x=x4;
        shape[id].point[4].y=y4;
        shape[id].point[shape[id].n+1]=shape[id].point[1];
    }
    else if (ss=="rectangle"){
        shape[id].n=4;
        for (int i=1;i<=3;i++){
            getchar();
            scanf("%lf,%lf",&shape[id].point[i].x,&shape[id].point[i].y);
            getchar();
            getchar();
        }
        shape[id].point[4].x=shape[id].point[3].x+shape[id].point[1].x-shape[id].point[2].x;
        shape[id].point[4].y=shape[id].point[3].y+shape[id].point[1].y-shape[id].point[2].y;
        shape[id].point[shape[id].n+1]=shape[id].point[1];
    }
    else if (ss=="line"){
        shape[id].n=2;
        for (int i=1;i<=2;i++){
            getchar();
            scanf("%lf,%lf",&shape[id].point[i].x,&shape[id].point[i].y);
            getchar();
            getchar();
        }
        shape[id].point[shape[id].n+1]=shape[id].point[1];
    }
    else if (ss=="triangle"){
        shape[id].n=3;
        for (int i=1;i<=3;i++){
            getchar();
            scanf("%lf,%lf",&shape[id].point[i].x,&shape[id].point[i].y);
            getchar();
            getchar();
        }
        shape[id].point[shape[id].n+1]=shape[id].point[1];
    }
    else if (ss=="polygon"){
        scanf("%d",&shape[id].n);
        getchar();
        for (int i=1;i<=shape[id].n;i++){
            getchar();
            scanf("%lf,%lf",&shape[id].point[i].x,&shape[id].point[i].y);
            getchar();
            getchar();
        }
        shape[id].point[shape[id].n+1]=shape[id].point[1];
    }
}

int main(){
    // freopen("1.txt","r",stdin);
    while (scanf("%c",&ch)!=EOF){
        getchar();
        memset(vis,false,sizeof(vis));
        for (int i=0;i<26;i++){
            shape[i].cnt=0;
            memset(shape[i].intersect,0,sizeof(shape[i].intersect));
        }
        if (ch=='.')    break;
        string ss;
        cin>>ss;
        int id=ch-'A';
        shape[id].kind=ss;
        vis[id]=true;
        getchar();
        input(id,ss);
        while (scanf("%c",&ch)!=EOF){
            getchar();
            if (ch=='-')    break;
            id=ch-'A';
            cin>>ss;
            shape[id].kind=ss;
            getchar();
            vis[id]=true;
            input(id,ss);
        }
        for (int i=0;i<26;i++){
            if (!vis[i])    continue;
            for (int j=i+1;j<26;j++){
                if (!vis[j])    continue;
                bool flag=false;
                for (int k1=1;k1<=shape[i].n;k1++){
                    for (int k2=1;k2<=shape[j].n;k2++){
                        if (intersect_in(shape[i].point[k1],shape[i].point[k1+1],shape[j].point[k2],shape[j].point[k2+1])){
                            flag=true;
                            break;
                        }
                    }
                    if (flag)
                        break;
                }
                if (flag){
                    shape[i].intersect[++shape[i].cnt]=j;
                    shape[j].intersect[++shape[j].cnt]=i;
                }
            }
        }
        for (int i=0;i<26;i++){
            if (!vis[i])    continue;
            if (shape[i].cnt==0){
                printf("%c has no intersections\n",i+'A');
                continue;
            }
            if (shape[i].cnt==1){
                printf("%c intersects with %c\n",i+'A',shape[i].intersect[1]+'A');
                continue;
            }
            if (shape[i].cnt==2){
                if (shape[i].intersect[1]>shape[i].intersect[2])
                    swap(shape[i].intersect[1],shape[i].intersect[2]);
                printf("%c intersects with %c and %c\n",i+'A',shape[i].intersect[1]+'A',shape[i].intersect[2]+'A');
                continue;
            }
            sort(shape[i].intersect+1,shape[i].intersect+shape[i].cnt+1);
            printf("%c intersects with ",i+'A');
            for (int j=1;j<=shape[i].cnt;j++){
                // B intersects with S, W, and X
                if (j==shape[i].cnt){
                    printf("and %c\n",shape[i].intersect[j]+'A');
                }
                else{
                    printf("%c, ",shape[i].intersect[j]+'A');
                }
            }
        }
        putchar('\n');
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值