题意:输入k(<=1e6),构造一个图使得图中大小为4的团恰好有k个。
首先考虑构造完全图,那么t个点的完全图一共能有C(t, 4)个大小为4的团。但是在C(t, 4)和C(t+1, 4)之间会有空缺,因此在完全图外放若干个点,每个点与这个完全图中的若干个点连边,最后会形成类似于C(t, 4)+C(x1, 3)+C(x2, 3)+…这样的式子,并且要能补满中间的空隙。
打表发现5个点可以满足。(不知道怎么严格证明)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
ll C4(ll n) { // C(n, 4)
ll ans = n * (n - 1) * (n - 2) * (n - 3) / (1 * 2 * 3 * 4);
return ans;
}
ll C3(ll n) { // C(n, 3)
ll ans = n * (n - 1) * (n - 2) / (1 * 2 * 3);
return ans;
}
ll mp[200000 + 5];
int k;
int main() {
#ifdef __APPLE__
freopen("1.in", "r", stdin);
freopen("1.out", "w", stdout);
#endif
memset(mp, -1, sizeof(mp));
for (ll i = 1; i <= 100; i++) {
mp[C3(i)] = i;
}
scanf("%d", &k);
ll C = 70;
ll t = 4;
while ((t + 1) <= C && C4(t + 1) <= k) {
t++;
}
C = min(C, t);
ll a, b, c, d, e = -1;
for (a = 2; a <= C; a++) {
for (b = a; b <= C; b++) {
for (c = b; c <= C; c++) {
for (d = c; d <= C; d++) {
ll cnt = C3(a) + C3(b) + C3(c) + C3(d);
if (cnt <= k - C4(t)
&& mp[k - C4(t) - cnt] >= 0
&& mp[k - C4(t) - cnt] <= C) {
e = mp[k - C4(t) - cnt];
break;
}
}
if (e != -1) break;
}
if (e != -1) break;
}
if (e != -1) break;
}
printf("%lld %lld\n", t + 5, t * (t - 1) / 2 + a + b + c + d + e);
for (int i = 1; i <= t; i++) {
for (int j = i + 1; j <= t; j++) {
printf("%d %d\n", i, j);
}
}
for (int j = 1; j <= a; j++) printf("%lld %d\n", t + 1, j);
for (int j = 1; j <= b; j++) printf("%lld %d\n", t + 2, j);
for (int j = 1; j <= c; j++) printf("%lld %d\n", t + 3, j);
for (int j = 1; j <= d; j++) printf("%lld %d\n", t + 4, j);
for (int j = 1; j <= e; j++) printf("%lld %d\n", t + 5, j);
}