根据一棵树的中序遍历与后序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
3
/
9 20
/
15 7
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
与105前序与中序数组构造二叉树唯一的区别就是 根节点的位置不同
后序数组的根节点在末位置
前序数组的根节点在首位置
依旧使用递归,,大致不变
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if(inorder.size()==0)
return NULL;
vector<int>in_left,in_right,post_left,post_right;
int gen=postorder[postorder.size()-1];
int genloc=0;
TreeNode* root=new TreeNode(gen);
for(int i=0;i<inorder.size();i++)//寻找根节点在中序数组中的位置
{
if(gen==inorder[i])
{
genloc=i;
break;
}
}
int rightlen=inorder.size()-1-genloc;//求出右子树的节点数
for(int i=0;i<inorder.size();i++)//把inorder的节点按左右子树划分
{
if(i<genloc)
{
in_left.push_back(inorder[i]);
}
if(i>genloc)
{
in_right.push_back(inorder[i]);
}
}
for(int i=0;i<postorder.size()-1;i++)//-1是为了把根节点丢掉
{
if(i<genloc)
{
post_left.push_back(postorder[i]);
}
else
{
post_right.push_back(postorder[i]);
}
}
root->left=buildTree(in_left,post_left);
root->right=buildTree(in_right,post_right);
return root;
}
};