问题描述
问题描述
n个人参加某项特殊考试。
为了公平,要求任何两个认识的人不能分在同一个考场。
求至少需要分几个考场才能满足条件。
输入格式
第一行,一个整数n(1<n<100),表示参加考试的人数。
第二行,一个整数m,表示接下来有m行数据
以下m行每行的格式为:两个整数a,b,用空格分开 (1<=a,b<=n) 表示第a个人与第b个人认识。
输出格式
一行一个整数,表示最少分几个考场。
样例输入
5
8
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5
样例输出
4
样例输入
5 10
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
样例输出
5
思路详解:
用一个二维数组保存两个人是否认识,对于每个人,都有两种选择:1)加入之前已经存在的考场 i,
前提是这个人与考场 i 内的所有人都不认识;2)新开一个人考试,这个人单独在新开的考场中。我们用dfs+回溯来确定最少考场数ans。如果某种方法的考场数已经大于按ans,那么可以提前剪枝。
代码详解
package oj.T3;
import java.util.*;
public class 分考场 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
sc.nextLine();
int m = sc.nextInt();
sc.nextLine();
int[][] arr = new int[m][2];
for(int i=0;i<m;i++){
arr[i][0] = sc.nextInt();
arr[i][1] = sc.nextInt();
sc.nextLine();
}
Solution3 sl = new Solution3();
System.out.println(sl.f(n,arr));
}
}
class Solution3{
//最终需要ans个考场
int ans;
List<List<Integer>> rooms = new ArrayList<>();
//know[i][j]:表示i认识j 或者 j认识i
boolean[][] know;
//总共有n个人
int n;
public int f(int n,int[][] arr){
know = new boolean[n+1][n+1];
//判断两个人是否认识
for(int i=0;i<arr.length;i++){
int people1 = arr[i][0];
int people2 = arr[i][1];
know[people1][people2] = true;
know[people2][people1] = true;
}
ans = Integer.MAX_VALUE;
this.n = n;
dfs(1);
return ans;
}
//index表示第几个人
public void dfs(int index){
//把所有人都安排好考场后 判断当前安排方法是否是最小
if(index == n+1){
ans = Math.min(ans,rooms.size());
return;
}
//提前剪枝
if(rooms.size() >= ans)
return;
//i表示第几个考场
for(int i=0;i<rooms.size();i++){
//判断index人是否与当前考场中的所有人认识
//如果index不认识当前考场所有人 则可以加入该考场
if(check(index,i)){
rooms.get(i).add(index);
//处理下一个人
dfs(index+1);
//回溯
rooms.get(i).remove(rooms.get(i).size()-1);
}
}
//创建新的考场
List<Integer> tempRoom = new ArrayList<>();
tempRoom.add(index);
rooms.add(tempRoom);
dfs(index+1);
rooms.remove(rooms.size()-1);
}
//判断第index个人是否可以加入第i个考场
public boolean check(int index,int i){
List<Integer> CurRoom = rooms.get(i);
for(int j=0;j<CurRoom.size();j++){
if(know[index][CurRoom.get(j)])
return false;
}
return true;
}
}