寻找第K大的数

可以用容量为K的最小堆来存储最大的K个数。最小堆的堆顶就是最大K个数中最小的一个,即第K大的数。每次新考虑一个数X,如果X比堆顶的元素Y小,则不需要改变原来的堆,如果比堆顶元素大,那么用X替换堆顶的元素Y。在X替换堆顶元素Y之后,X可能破坏最小堆的结构,需要更新堆来维持堆的性质。更新过程花费的时间复杂度为O(log2K).

#include<iostream>
using namespace std;

void maxHeap(int *a,int i,int heapSize)
{
	int l = 2*i;
	int r = 2*i+1;
	int maximum=0;
	if(l<=heapSize&&a[l-1]>a[i-1])          //左孩子大于父节点
		maximum = l;
	else
		maximum = i;
	if(r<=heapSize&&a[r-1]>a[maximum-1])    //若右孩子比左孩子、父节点都大
		maximum = r;
	if(maximum!=i)
	{
		swap(a[i-1],a[maximum-1]);
		maxHeap(a,maximum,heapSize);      //检测孩子树
	}
}

void buildMaxHeap(int *a,int heapSize)
{
	for(int i=heapSize/2;i>=1;--i)       //从heapSize/2开始建堆
		maxHeap(a,i,heapSize);
}

void heapSort(int *a,int heapSize)
{
	buildMaxHeap(a,heapSize);          //建堆
	for(int i=heapSize;i>=2;--i)
	{
		swap(a[0],a[i-1]);
		--heapSize;
		maxHeap(a,1,heapSize);        //调整
	}
}

int K_max(int *temp,int *a,int K,int num)
{
	for(int i=K;i<num;++i)
	{
		if(a[i]>temp[0])
		{
			temp[0] = a[i];
			int p = 0;
			while(p < K)
			{
				int q = 2*p+1;
				if(q>=K)  //已到叶节点
					break;
				if(q<K-1 && temp[q+1]<temp[q])
					++q;
				if(temp[q] < temp[p])
				{
					swap(temp[q],temp[p]);
					p = q;
				}
				else
					break;
			}
		}
	}
	return temp[0];
}

void print(int *a,int num)  
{  
    for(int i=0;i<num;++i)  
        cout<<a[i]<<ends;  
} 
int main()
{
	int a[]={16,4,10,14,7,9,3,2,8,1,5,0,20};
	int num = sizeof(a)/sizeof(a[0]);
	int K;
	cout<<"Please input the K(the number of K-max):";
	cin>>K;
	int *temp = new int[K] ;
	for(int i=0;i<K;++i)
		temp[i] = a[i];
	heapSort(temp,K);
	//heapSort(a,num);
	print(temp,K);
	//print(a,num);
	cout<<endl<<K_max(temp,a,K,num)<<endl;
	//print(temp,K);

	return 0;
}

完成后时间复杂度为O(N*log2K).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值