笔试模拟 day14

观前提醒:

笔试所有系列文章均是记录本人的笔试题思路与代码,从中得到的启发和从别人题解的学习到的地方,所以关于题目的解答,只是以本人能读懂为目标,如果大家觉得看不懂,那是正常的。如果对本文的某些知识有不同的观点,欢迎讨论。

题目链接:

第一题:乒乓球筐__牛客网

第二题:组队竞赛_牛客笔试题_牛客网

第三题:删除相邻数字的最大分数_牛客题霸_牛客网【重做】

---------------------------------------------------我是分割线---------------------------------------------------------------

---------------------------------------------------我是分割线---------------------------------------------------------------

---------------------------------------------------我是分割线---------------------------------------------------------------

---------------------------------------------------我是分割线---------------------------------------------------------------

---------------------------------------------------我是分割线---------------------------------------------------------------

第一题 

思路:

一道特别简单的哈希表的应用,直接根据题意就可以了。题目的要求就是判断,B是不是A的子集就好。

代码: 

#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;

int main() {
    string A, B;
    while(cin>>A>>B)
    {
    unordered_map<char,int> hash;
    bool flag=false;
    for(auto& e:B)
    {
        hash[e]++;
    }
    for(int i=0;i<A.size();i++)
    {
        hash[A[i]]--;
    }
    for(auto& [a,b]:hash)
    {
        if(b > 0)
        {
            flag=true;
        }
    }
    if(flag) cout<<"No"<<endl;
    else cout<<"Yes"<<endl;
    }
  
    
    return 0;

}

---------------------------------------------------我是分割线---------------------------------------------------------------

---------------------------------------------------我是分割线---------------------------------------------------------------

---------------------------------------------------我是分割线---------------------------------------------------------------

第二题 

思路:

这还是一道比较简单的贪心题目,根据题意我们的要求是让总和最大,那我们可以让每个小组的中位数最大,既然想要中位数最大,但是我们取不到最大的值,那我们只能取第二大的值了,但是小组还有一个位置,但是这个位置上的数是没有的,所以我们可以选择当前最小的数字填上去,那我们的贪心策略不就出来了,每一组分配当前数组中最大值与次大值,最小值就好。

并且题目只是要求我们求出最大和,我们没有必要真从数组中挑选数字,我们直接找到中位数加起来就好了。

代码:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
    long long n=0;
    cin>>n;
    vector<long long> nums(n*3);
    long long sum=0;
    for(int i=0;i<n*3;i++)
    {
        int a=0;
        cin>>a;
        // cout<<a<<endl;
        nums[i]=a;
    }
    sort(nums.begin(),nums.end());
    int k=0,i=n*3-2;
    while(k<i)
    {
        sum+=nums[i];
        i-=2;
        k++;
    }
    printf("%lld\n",sum);
    return 0;
}

---------------------------------------------------我是分割线---------------------------------------------------------------

---------------------------------------------------我是分割线---------------------------------------------------------------

---------------------------------------------------我是分割线---------------------------------------------------------------

第三题 

思路:

这道题还是一道比较经典的dp问题,间隔取数字,我们如果只是对原数组讨论的话,其实不还做,因为我们想要找的和最大的情况,我们就必须判断每个元素有多少,并且要考虑元素本身数字大小带来的影响,所以方便讨论我们选择将数组的元素放入哈希表中。

观察哈希表我们的dp解法的思路不就有了吗?

我们可以看到下标就表示的是元素本身,这道题目就转化为了在一群有序数组中找到最大和,满足题目条件。

这种类型的题目是典型的打家劫舍题目。

根据状态表示我们可以直接开辟两个大小是原数组中最大值的dp表,具体含义如上。

至于状态转移方程,我们直接分类讨论就好了。

代码:

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <unordered_map>
using namespace std;

int main() {
    int n = 0;
    cin >> n;
    unordered_map<long long, int> hash;
    long long M = 0;
    long long x = 0;
    for (int i = 0; i < n; i++) {
        cin >> x;
        M=max(M,x);
        hash[x]++;
    }
    long long ret = 0;
    vector<long long> dp(1e4+1, 0); //dp[i]表示选取i元素的时候,能得到的最多分。
    vector<long long> fp(1e4+1, 0); //fp[i]表示不选取i元素的时候,能得到的最多分。
    for (int i = 1; i <= M; i++) {
        dp[i]=hash[i]*i+fp[i-1];
        fp[i]=max(dp[i-1],fp[i-1]);
        ret = max(ret, max(dp[i],fp[i]));
    }
    printf("%lld\n", ret);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值