程序分析:
1. 在主函数中,输入要求最大公约数的两个数 a , b,然后进入子程序中;
2. 在子程序中先判断输进来的两个数的大小,若 b < a 则借助中间变量交换他俩的值,这一步是为了保证 a 是两个值中的最小值。若没有这一步程序就存在 bug,因为当 a > b 时程序就会出错。
3. 接着将最小值 a 作为除数,若 b 可以整除 a 则说明 a 就是最大的公约数;若不能整除,则 a 的值依次减小1,然后继续做除数看能否被整除。
注:此处为什么要选择 a 依次递减1,而不是递增?这是因为题目要求的是最大的公约数,如果递增就会存在问题,即有时两个数存在不止一个的公约数,但有的公约数并不是最大的公约数,所以此处选择让 a 递减就可找到最大的公约数。
#include<stdio.h>
int Greatest_Common_Divisor(int a,int b)
{
int i;
if (b < a)
{
i = b;
b = a;
a = i;
}
if (b % a == 0)
{
printf("最大公约数为:");
return a;
}
printf("\n");
if (b % a != 0)
{
for (i = a; i > 0; i--)
if (b % i == 0 && a % i == 0)
{
printf("最大公约数为:");
return i;
}
}
}
int main()
{
printf("%d", Greatest_Common_Divisor(6,12)); //结果为:6
printf("%d", Greatest_Common_Divisor(18, 12)); //结果为:6
}
调试结果为: