二叉排序树 与 平衡二叉树

二叉排序树:根节点值大于树的左叶子结点值,且根节点值小于右叶子节点值

平衡二叉树:1.平衡二叉树是二叉排序树,是二叉排序树的改良版,相同序列平衡二叉树的高度小于或等于二叉排序数的

                     高度,  所以平衡二叉树的查找比二叉排序树快。但平衡二叉树的创建过程,保证二叉树平衡调整次数较多。

                     2.平衡二叉树的左右叶子结点高度差情况只能为 -1,0,1

由上特点知,如果使用中序遍历遍历二叉排序树或平衡二叉树,则得到的是一个从小到大的顺序序列。

创建二叉排序树算法:

#include<iostream>
#include<malloc.h>
using namespace std;
//二叉排序树结点
typedef struct node{
	int data;
	struct node *lchild;
	struct node *rchild;
}node;
//创建二叉排序数 
void createTree(node *&t,int k)
{
	if(t==NULL)
	{
		t=(node *)malloc(sizeof(node));
		t->data=k;
		t->lchild=NULL;
		t->rchild=NULL;	
		return;
	}	
	else
	{
		if(t->data==k)
		{
			return;
		}
		else if(t->data > k)
		{
			createTree(t->lchild,k);
		}
		else
		{
			createTree(t->rchild,k);
		}
	}
} 
//中序遍历输出 
void MidSequence(node *t)
{
	if(t)
	{
		MidSequence(t->lchild);
		cout<<t->data<<" ";
		MidSequence(t->rchild);
	}
}

int main()
{
	int m;
	int a[100];
	cin>>m; //待输入元素个数 
	node *t=NULL;
	for(int i =0;i<m;i++)
	{
		cin>>a[i];
		createTree(t,a[i]); //创建二叉排序树 
	}
	MidSequence(t);//中序输出查看 
	
}

显然:由于二叉排序树的特点,所以树中每个结点的值都是唯一的。

二叉排序树多用于查找算法中,稍改一下上述代码,相当于二分查找

//二叉排序树查找算法 
void selectTree(node *t,int k)
{
	if(t==NULL)
	{
		cout<<"查找失败" ;
		return;
	}	
	else
	{
		if(t->data==k) //当查找到该结点,返回该结点 
		{
			cout<<"查找成功" ;
			return;
		}
		else if(t->data > k)
		{
			selectTree(t->lchild,k);
		}
		else
		{
			 selectTree(t->rchild,k);
		}
	}
} 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值