自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(80)
  • 收藏
  • 关注

原创 高斯列主元消去法(matlab两种实现方法)

matlab实现高斯列主元消去法,编写了两个函数文件,都能实现相同的功能。

2024-03-18 20:56:07 7214 7

原创 matlab绘图(二)绘制三维图像

曲面图绘制(只需将mesh改为surf即可),这十张图片体现不同的颜色映射风格,标题为对应的colormap的值。对应列元素绘制三维曲线,曲线条数等于矩阵列数。由各划分点分别作平行于两坐标轴的直线,则得到二维矩形区域。surf用于绘制三维曲面图,各线条之间的补面用颜色填充。对于参数形式表示的三维曲线,还可以用简易绘图函数。组成一组曲线的坐标参数,选项的定义和。C(i,j)是Pij的颜色值。1.最基本的绘制三维曲线的函数。等函数就可以把这张曲面画出来。映射到曲面上,就得到曲面上的。表示的曲面,通常,先在。

2023-03-10 11:52:37 56924 6

原创 matlab绘图(一)简单二维图像

matlab绘制二维曲线的方法,基本描述,plot函数用法,颜色,线性,标记设置。图形的标注格式。

2023-03-06 16:41:07 3318

原创 基于CNN实现Mnist手写数字识别

本文介绍了基于MNIST手写数字数据集的CNN模型构建与训练过程。MNIST数据集包含70,000张28×28像素的灰度图像,分为60,000张训练集和10,000张测试集。设计了一个包含两个卷积层(32和64个特征图)、池化层、Dropout层和全连接层的CNN网络,共421,642个参数。经过10轮训练后,模型在测试集上达到99.28%的准确率,各类别的precision和recall均在0.98以上。最佳测试准确率为99.30%(第6轮)完整代码和数据集可通过私信获取。

2026-01-15 20:02:08 189

原创 pgn网络模型

pgn网络模型,后续会更新。

2026-01-15 14:25:49 7

原创 python---力扣数学部分

本文介绍了四个算法问题的解法:1. 阶乘后的零:通过统计质因子5的个数计算n!末尾零的数量;2. 实现pow(x,n):采用快速幂算法高效计算幂运算;3. 回文数:将数字转为字符串后判断是否与其逆序相同;4. x的平方根:通过遍历或数学方法计算平方根的整数部分。每个问题都给出了核心思路和Python实现代码,并附有示例说明。

2026-01-15 13:56:10 523

原创 python--爬虫入门

本文介绍了Python中常用的HTTP客户端库Requests。该库具有简单易用、功能全面的特点,支持HTTP所有主要方法,能自动处理URL编码、连接池管理等。文章通过示例代码展示了如何使用Requests发送GET/POST请求(包括表单数据、JSON数据和文件上传)、其他HTTP方法(PUT/DELETE/PATCH/HEAD),以及如何处理响应内容(状态码、响应头、Cookies等)。Requests库的直观API设计和丰富功能使其成为Python处理HTTP请求的首选工具。

2026-01-13 14:38:31 41

原创 基于VGG16预训练模型实现cifar10数据集的分类任务

本文介绍了使用VGG16预训练模型在CIFAR-10数据集上进行图像分类的实现过程。VGG16是由牛津大学提出的16层深度卷积神经网络,采用3×3小卷积核和最大池化层堆叠结构。通过迁移学习,在CIFAR-10数据集上实现了91.30%的最高测试准确率。实验使用Adam优化器和余弦退火学习率调度器,包含数据增强、批量归一化等技术。代码实现了完整的训练流程,包括模型定义、数据预处理、训练评估函数和推理功能,并输出了每类别的准确率分析。结果表明VGG16在小规模数据集上具有优秀的特征提取能力。

2026-01-12 23:23:53 473

原创 lammps建模--一种实用的建模方法

本文介绍了鸿之微云计算平台作为替代MaterialStudio的建模解决方案。该平台面向高校、科研院所和工业界研究人员,提供"五朵云"服务:软件云(多尺度材料计算工具)、算力云(弹性HPC资源)、工具云/数据云(协作管理功能)和体验云(便捷操作界面)。平台特色在于软硬结合架构,采用国产自主研发软件(如DS-PAW、BDF)并与产学研机构深度合作,为用户提供从建模到计算的一站式云服务解决方案。

2026-01-12 13:46:55 388

原创 macbert模型介绍

后续会继续更新,感兴趣的友友给博主点个免费的关注吧~

2026-01-12 13:17:34 68

原创 基于Inception-V3预训练模型实现cifar-10数据集的分类任务

本文介绍了Google Brain团队提出的Inception-V3深度卷积神经网络架构及其在CIFAR-10数据集上的应用实现。Inception-V3通过多尺度特征提取优化(如非对称卷积分解)和训练稳定性优化(批量归一化、标签平滑等技术),在ImageNet上实现了5.6%的top-5错误率。文章详细阐述了模型架构、核心创新点和性能优势,并提供了完整的PyTorch实现代码,包括数据预处理、模型训练和评估过程。实验结果显示,该模型在CIFAR-10分类任务中达到了96.43%的测试准确率,验证了其在图像

2026-01-12 12:57:42 1731

原创 MoE混合专家架构

本文介绍了混合专家架构(MOE)的工作原理及应用。MOE通过将任务分配给多个专家网络来提高模型性能,每个专家专注于不同子任务,由门控网络决定权重分配。这种架构能有效扩展模型容量,同时保持计算效率,广泛应用于大规模语言模型等领域。MOE结合了专家网络的专业性和门控机制的灵活性,在提升模型表现的同时控制计算成本。

2026-01-11 22:59:27 83

原创 基于Resnet50预训练模型实现CIFAR-10数据集的分类任务

本文介绍了基于ResNet50预训练模型实现CIFAR-10数据集分类的方法。ResNet50通过残差连接解决了深度网络的梯度消失问题,包含50层卷积网络结构。实验采用迁移学习策略,冻结大部分预训练层,仅微调最后几层以适应32×32小图像分类任务。经过100轮训练,模型在测试集上达到94.56%的最高准确率,验证了ResNet50在小图像分类任务上的有效性。该方法通过调整网络结构(如减小初始卷积核尺寸、移除最大池化层)和采用数据增强策略,显著提升了模型性能。

2026-01-11 22:58:03 1032

原创 腾讯云--创建jupyter lab的方法

腾讯云注册用户可免费领取每日2小时计算资源。创建JupyterLab步骤:1)创建Ubuntu或PyTorch应用;2)终端输入启动命令;3)在端口管理中找到对应端口并访问;4)成功进入JupyterLab界面。操作简单快捷,适合开发者使用。(98字)

2026-01-10 13:57:16 371

原创 神经网络--手机价格分类

本文介绍了一个基于PyTorch的手机价格分类模型构建过程。首先对2000条手机参数数据进行标准化处理,划分为1600条训练集和400条测试集。构建了一个三层全连接神经网络,使用Sigmoid激活函数和交叉熵损失函数。通过调整学习率(1e-2)、批次大小(4)和训练轮数(150)等参数,最终在测试集上达到了97%的分类准确率。实验表明,数据标准化和大学习率能显著提升模型性能,而小批次训练有助于避免过拟合。该模型能有效根据手机配置参数预测其价格区间(0-3四个等级)。

2026-01-10 13:54:17 1092

原创 Python---网络编程

本文介绍了网络编程的基础知识,主要包括三个方面:网络编程三要素(IP地址、端口号、协议)、Socket通信原理及实现步骤。IP地址分为IPv4和IPv6,端口号范围为0-65535,协议包括TCP(可靠连接)和UDP(无连接)。Socket通信通过创建客户端和服务器端Socket对象实现数据传输,详细说明了建立连接的"三次握手"和断开连接的"四次挥手"过程。文章还提供了编解码示例代码,展示字符串与二进制数据的相互转换,并给出了客户端收发信息的完整实现案例,包括创建So

2026-01-09 15:10:18 742

原创 手撕Transformer源码(解码器和输出部分)

本文详细介绍了Transformer模型的解码器部分实现。解码器由N个相同的解码器层堆叠组成,每个解码器层包含3个子层连接结构:多头自注意力子层、编码器-解码器注意力子层和前馈全连接子层,各子层均配有层归一化和残差连接。文章提供了完整的PyTorch实现代码,包括解码器层(DecoderLayer)和解码器(Decoder)的实现,以及输出部分的线性变换和softmax层(Generator)。通过具体示例展示了输入数据在解码器中的处理流程,最终输出维度为[batch_size, seq_len, d_mo

2026-01-09 12:47:00 1015

原创 逻辑回归及案例分析

本文介绍了逻辑回归的基本原理和应用场景。主要内容包括:1)逻辑回归是一种二分类算法,通过sigmoid函数将线性回归输出映射为概率值;2)核心数学概念包括极大似然估计和对数函数;3)详细讲解了逻辑回归的假设函数和损失函数;4)通过癌症分类案例演示了sklearn中逻辑回归API的使用流程;5)介绍了分类评估指标如混淆矩阵、精确率、召回率、F1-score和ROC曲线;6)最后以电信客户流失预测案例展示了实际应用流程。文章系统性地阐述了逻辑回归的理论基础和实践应用,适合机器学习初学者学习分类算法。

2026-01-08 22:35:02 660

原创 手撕Transformer源码(输入部分和编码器)

本文介绍了Transformer模型的输入部分和编码器部分的实现细节。输入部分包含文本嵌入层和位置编码器,将词汇转换为向量表示并添加位置信息。编码器部分实现了掩码张量、多头注意力机制、前馈全连接层、规范化层和子层连接结构。其中,多头注意力机制通过分割词向量维度实现多角度特征提取,规范化层用于数值标准化,子层连接结合了残差连接和层归一化。代码演示了各模块的具体实现,包括嵌入层、位置编码、注意力计算等关键步骤,并展示了中间结果的维度变化。这些组件共同构成了Transformer编码器的核心架构。

2026-01-08 17:13:00 1232

原创 python---正则表达式

正则表达式(Regular Expression,简称re/RegExp)是用于字符串匹配的规则表达式,广泛应用于数据校验。Python中通过re模块实现正则功能,主要方法包括match()(全词匹配)、search()(分段匹配)和sub()(替换)。常见规则包括:.匹配任意字符(除\n),\d匹配数字,\w匹配非特殊字符,^/$表示开头/结尾,量词?/*/+控制出现次数,()用于分组,|表示或。分组可通过\num或(?P=name)引用。示例演示了字符校验、开头结尾匹配、分组提取(如邮箱验证)和HTML

2026-01-07 18:54:21 1098 1

原创 Lammps--建模---Logo

该LAMMPS模拟创建了一个2D系统来展示"LAMMPS"标志的动态行为。通过定义多个区域构建了字母形状(L、A、M、P、S),初始配置为低密度方形晶格。系统采用Lennard-Jones势能,时间步长0.005,运行过程包含以下关键步骤:1) 暂停可视化运行100步;2) 溶解晶格结构(NVE系综)运行1000步;3) 再次暂停;4) 反转原子速度使标志重新组装。最终结果展示了标志从分散状态自发重组的过程,验证了系统的可逆性。

2026-01-07 11:50:13 116

原创 python--数据结构--链表

本文介绍了链表的基本概念和实现方法。链表是一种线性数据结构,包含单向链表、单向循环链表、双向链表和双向循环链表四种类型。重点讲解了单向链表的Python实现,包括节点类(SingleNode)和链表类(SingleLinkedList)的设计。链表类实现了常见操作:判断空链表、获取长度、遍历链表、头部/尾部/指定位置添加元素、删除节点和查找节点。通过示例代码演示了这些方法的使用,包括创建链表、添加/删除元素等操作。测试结果显示链表操作正确,验证了实现的可行性。该实现为理解链表数据结构提供了清晰的编程范例。

2026-01-06 13:50:01 654

原创 Python---多线程相关内容

本文介绍了线程的基本概念、操作步骤及其与进程的区别。线程是CPU调度的基本单位,共享进程资源,而进程则是资源分配单位。文章详细讲解了线程的创建、启动方法,并通过示例代码演示了多线程并发执行的特点。针对多线程共享全局变量可能引发的安全问题,提出了线程同步(加锁)的解决方案。此外,还探讨了线程生命周期、守护线程设置等细节,帮助读者理解多线程编程的核心要点。

2026-01-06 13:35:10 1383 1

原创 Lammps建模--金属管壁填充气体

摘要:该LAMMPS模拟脚本构建了一个金属管道内外部气体系统的原子模型。采用金属单位制,创建了900×250×250埃的模拟盒子。管道壁由60-80埃半径的金原子圆管构成,内外部分别填充氢气分子(各540个)。通过区域运算定义几何结构,设置原子类型、质量参数,并将初始构型输出为Model.data文件。整个模型包含三种关键区域:外部气体区(80埃半径外)、金属管壁区(60-80埃)和内部气体区(60埃半径内),为后续分子动力学模拟提供基础。

2026-01-05 22:07:42 251

原创 Pycharm(十八)进程相关内容

本文介绍了多任务处理中的多进程编程。主要内容包括:1.多任务概念(并发与并行)及进程/线程区别;2.单进程程序的局限性;3.多进程实现步骤(导包、创建进程对象、启动进程);4.带参数的多进程程序实现;5.获取进程ID的方法;6.进程间数据隔离特性;7.主进程与子进程的生命周期管理,包括守护进程设置和手动终止子进程。通过Python代码示例演示了单进程与多进程执行差异,并验证了进程隔离特性。最后探讨了主进程等待子进程结束的默认行为及修改方法。

2026-01-05 21:43:41 777

原创 文本纠错项目V1.0

本文提出了一种基于BERT和SimCSE的金融领域文本纠错系统,主要针对股票、基金等专业词汇的识别与纠正。系统采用三阶段处理流程:首先通过BERT+SpanPointer模型进行命名实体识别,定位金融专业词汇;然后利用SimCSE训练嵌入模型,通过Faiss向量数据库实现相似词召回;最后使用MacBERT进行二次纠错。实验结果显示,该系统在金融文本纠错任务中F1值达到95%以上,有效解决了专业领域文本输入错误的问题。文章详细介绍了模型架构、训练流程及评估方法,并展示了实际纠错案例。该系统可应用于金融信息查询

2025-12-27 11:49:24 647

原创 知识图谱项目

知识图谱项目。

2025-12-26 22:58:36 89

原创 投满分项目

将数据转化成fasttext需要的数据格式文本:采用正常的连续字符串;标签:采用labelname的格式。import osimport sysidx=0idx+=1count=0#1.首先处理标签部分#2.处理文本部分,为了便于后续增加n-gram特性,可以按字划分,也可以按词划分#3.将文本和标签组合成fasttext规定的格式count+=1print('Fasttext训练数据预处理完毕!')

2025-12-02 21:07:31 982

原创 Leetcode07-整数反转

摘要:本文提出两种整数反转方法。第一种将整数转为字符串反转后再转回数字,需处理负号和溢出情况。第二种利用取余和整除运算,通过flag标记正负,同样需要检查溢出。两种方法时间复杂度均为O(n),空间复杂度O(1)。第二种方法避免了字符串转换,更高效。关键点在于正确处理负数和32位整数范围限制。

2025-12-02 19:12:52 271

原创 Pycharm(二十二)递归删除文件夹

摘要:本文介绍了一个递归删除文件夹的Python实现方法,包含三个关键步骤:(1)遇到文件直接删除;(2)遇到文件夹则递归处理;(3)当文件夹为空时删除该目录。核心逻辑是使用os模块的listdir()、remove()和rmdir()函数,通过判断路径类型实现递归删除。代码示例展示了完整的实现过程,包括路径合法性检查、子项遍历处理和空文件夹删除等细节,最终成功删除指定路径下的所有内容。该方法适用于需要彻底清理文件夹及其内容的场景。

2025-09-07 16:07:32 258

原创 动手学深度学习

《动手学深度学习》是一本实践导向的教材,系统介绍深度学习核心技术与应用。内容涵盖神经网络基础、CNN图像处理、RNN及其变体在NLP中的应用、强化学习原理,以及TensorFlow/PyTorch框架使用。书中通过大量代码示例讲解模型构建与优化技巧,并延伸至GAN、VAE等前沿技术,帮助读者从基础到进阶掌握深度学习全貌。

2025-09-02 15:39:02 281

原创 Pycharm(二十一)神经网络入门

人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型。人脑可以看做是一个生物神经网络,由众多的神经元连接而成。各个神经元传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号。当电信号通过树突进入到细胞核时,会逐渐聚集电荷。达到一定的电位后,细胞就会被激活,通过轴突发出电信号。如何构建神经网络?这个过程就像,来源不同树突(树突都会有不同的权重)的信息, 进行的加权计算。

2025-06-17 15:46:19 564

原创 Pycharm(二十)张量的运算与操作

数组,但是共享内存,可以使用。函数可以将张量转换为。

2025-05-10 14:58:44 408

原创 Pycharm(十九)深度学习

深度学习是机器学习中的一种特殊方法,它使用称为神经网络的复杂结构,特别是“深层”的神经网络,来学习和做出预测。深度学习特别适合处理大规模和高维度的数据,如图像、声音和文本。深度学习、机器学习和人工智能之间的关系如下图所示:深度学习⊆机器学习⊆人工智能优点:1)精度高,性能优于其他的机器学习算法,甚至在某些领域超过了人类;2)随之计算机硬件的发展,可以近似任意的非线性函数;3)近年来在学界和业界受到了热捧,有大量的框架和库可供调。缺点:1)黑箱。

2025-05-06 15:35:58 1751

原创 链表相关——Python实现

【代码】链表相关。

2025-04-28 23:41:46 297

原创 Pycharm(十七)生成器

生成器指的是Generator对象,它不再像以往一样,一次性生成所有的数据,而是用一个,再生成一个,基于用户写的规则(条件)来生成数据,如果条件不成立,则生成结束。yield可以创建生成器对象,逐个地把每个元素放到生成器对象中,函数结束时,返回生成器对象。

2025-04-27 23:19:59 1197

原创 Pycharm(十六)面向对象进阶

子类出现和父类重名的属性, 方法时, 会覆盖父类中的成员, 这种写法就称之为: 重写, 也叫: 覆盖.3. 多继承关系中, 多个父类如果有重名属性或者方法时, 子类会优先使用第1个父类(即: 最前边的父类)的该成员.,或者相同的,每次写很麻烦,针对这种情况, 我们可以把这些相似(相同的)部分抽取出来,单独地放到1个类中(2. 多继承关系中, 子类可以继承所有父类的属性和行为. 前提: 父类的私有成员除外.子承父业,Python中的继承,子类=>继承父类的 属性,行为。耦合:指的是类与类之间的关系。

2025-04-25 21:44:54 702 1

原创 Pycharm(六):可变与不可变类型

2.深浅拷贝都可以操作可变 和 不可变类型, 但是深浅拷贝一般不会操作不可变类型, 且你遇到的面试题几乎都是: 深浅拷贝操作可变类型;python中的赋值属于引用赋值,对于a,b,10都指向相同的内存空间,b是a的别名。1.所谓的深浅拷贝, 指的是: 拷贝的多与少. 深拷贝拷贝的多, 浅拷贝拷贝的少;,修改值之后会地址值会发生改变,变量a原来指向100对应的地址,修改值之后,不可变类型:整型,浮点型,布尔类型,字符串类型,元组类型。进行拷贝对拷贝的对象开辟新的内存空间进行存储,不会拷贝对象内部的。

2025-04-25 20:36:53 1128

原创 Pycharm(十五)面向对象程序设计基础

五、魔法方法init方法属性:名词,用来描述事物的外在特征的,例如:姓名,性别,年龄,身高,体重...行为:动词,表示事物能够做什么,例如:学习,吃,睡...类:抽象的概念,看不见,摸不着,类=属性+行为;对象:类的具体体现,实现.1.1 定义类的格式如何使用类中的成员:1.2 创建该类的对象.对象名=类名()1.3 通过 对象名.的方式来调用对象名.属性对象名.行为()如下示例:定义1个汽车类,具有跑的功能,并调用.#属性#行为print('汽车会跑!')c1=Car()

2025-04-22 17:02:58 780

原创 matlab设置不同颜色的柱状图

需要先设置FaceColor为'flat'.然后更改你想要修改的柱状图的第几个柱子的RGB值即可。

2025-04-22 11:43:47 644

基于Inception-V3实现cifar-10数据集的分类任务

本资源介绍了Google Brain团队提出的Inception-V3深度卷积神经网络架构及其在CIFAR-10数据集上的应用实现。Inception-V3通过多尺度特征提取优化(如非对称卷积分解)和训练稳定性优化(批量归一化、标签平滑等技术),在ImageNet上实现了5.6%的top-5错误率。文章详细阐述了模型架构、核心创新点和性能优势,并提供了完整的PyTorch实现代码,包括数据预处理、模型训练和评估过程。实验结果显示,该模型在CIFAR-10分类任务中达到了96.43%的测试准确率,验证了其在图像分类任务中的优异性能。

2026-01-12

《动手学深度学习》是一本面向实践的深度学习教材,旨在帮助读者通过亲手操作来深入理解和掌握深度学习的核心概念和技术 书中的内容涵盖了从基础知识到高级应用的广泛领域,是初学者和进阶者深入了解这一领域的宝贵

全书主要包括二十一个章节的内容,分别是: 一、引言 二、预备知识 三、线性神经网络处理回归任务 四、线性神经网络处理分类任务 五、多层感知机 六、构建网络模型 七、卷积神经网络 八、现代卷积神经网络 九、循环神经网络 十、现代循环神经网络 十一、注意力机制 十二、优化算法 十三、计算性能 十四、计算机视觉 十五、自然语言处理:预训练 十六、自然语言处理:应用 十七、强化学习 十八、高斯过程 十九、超参数优化 二十、生成式对抗网络 二十一、推荐系统

2025-09-02

Matlab与数学建模教程

包含以下几个部分: 1)MATLAB概述; 2)MATLAB运算基础; 3)MATLAB程序设计基础; 4) 字符串、元胞数组; 5)符号运算; 6)MATLAB绘图; 7)MATLAB与数学建模; 8)MATLAB绘制动态图

2025-06-26

MATLAB数据批量可视化

根据数据集属性特征,通过MATLAB编程实现数据批量可视化,并自动保存到对应的文件夹下,编写不同的函数来实现上述功能。

2025-04-22

python字符串相关操作实例代码及案例

1. 字符串的定义与特性 - 单引号、双引号、三引号 - 不可变性 2. 常用方法分类 a. 大小写转换 b. 查找与替换 c. 分割与连接 d. 去除空白 e. 判断内容 f. 格式化 g. 其他方法(统计、填充、对齐等) 每个类别下列举方法,说明功能,示例。比如: a. 大小写转换 - upper(): 转为大写 - lower(): 转为小写 - capitalize(): 首字母大写 - title(): 每个单词首字母大写 示例代码: s = "hello world" print(s.upper()) # "HELLO WORLD" 确保例子正确,比如capitalize()会把第一个字符大写,其余小写,所以"hello world".capitalize()会变成"Hello world"? 或者原字符串中有其他大写字母的话,capitalize()会把其余字母变为小写。比如"hElLo".capitalize()变成"Hello"? 需要确认这些方法的实际行为,避免给出错误示例。 比如测试一下: s = "hEllO" s.capitalize() → "Hello" s.title() → "Hello" 比如多个单词的话,每个单词的首字母大写:"hello world".title() → "Hello World"

2025-04-03

基于偏微分方程的图像复原

数字图像修复指的是根据图像的已知区域信息来恢复其丢失或损坏的区域。图像修复技术可分为两大类:以图像平滑性为先验约束的基于扩散的图像修复方法和以图像自相似性为先验约束的基于纹理合成的图像修复方法。基于扩散的修复方法通过建立和求解偏微分方程对图像进行修复,其中被研究得最多的是 BSCB 模型和 TV 模型,本项目主要分析了BSCB模型的原理,并对修复效果做了仿真实验。

2025-03-29

MATLAB常见绘图示例,二维,三维,柱状图,动态图

code.txt内部包含了很多绘图的实例,包括二维绘图,以及常见的标题,图例,坐标轴刻度,字体大小设计如何实现,三维绘图,以及复杂条形图,动态图的生成。

2025-03-20

页岩油四性潜力层判识工具

基于Python的页岩油四性潜力层判识工具的研发和应用,推动了页岩油相关技术的创新和发展,为页岩油相关的数据处理、甜点识别提供了更加系统科学的指导。通过该系统结合页岩油四性测井及录井数据,对页岩油进行分级评价,结合resform导出的页岩油相关属性数据,通过python对数据进行分析处理,判识出页岩油的四性潜力层甜点,并将最终处理的结果导入到resform中,resform是一款地质研究工作软件,具有单井图、对比图、平面图以及综合图表的编绘能力。基于python的页岩油四性潜力层判识工具,能够更加精准地判识各个井位页岩油潜力层的分布情况,如图2所示,其中含油性潜力层、储集性潜力层、可动性潜力层、可压性潜力层为利用python语言编程,并结合四性潜力层分级评价标准判识出的结果,结合层次分析法,对四性潜力层权重进行分析,最终划分出综合潜力层,极大地提高了页岩油勘探开发人员的工作效率。

2024-12-25

pytorch深度学习资料

有关pytorch深度学习的一些资料,介绍了numpy,pandas,torch相关库的使用,误差反向传播机制,梯度下降,数据集的加载与变换,卷积神经网络,循环神经网络,有需要的话自行下载即可。

2024-06-10

JX1-1-1井每种岩相分别发育哪种类型的潜力层

JX1-1-1井每种岩相分别发育哪种类型的潜力层

2024-05-27

潜力层判识python实现

通过python编程根据潜力层判识标准,自动划分潜力层

2024-05-27

matlab+动态爱心

matlab生成爱心代码,可以将名字修改一下,发给自己喜欢的人

2024-05-19

matlab-code

这里边有我积累的一些常用的matlab代码

2024-04-23

数据预处理-随机森林填充

采用随机森林的方法来对缺失值进行填充

2024-04-23

泛函分析是数学中的一个分支领域,研究的是无限维空间上的函数和它们的性质 它结合了线性代数、实变函数论和拓扑学的概念与方法

在泛函分析中,研究的对象通常是向量空间上的函数或者操作符(或称为泛函),而不再局限于实数或复数上的有限维向量。常见的研究对象包括无穷序列、函数空间、算子等。泛函分析主要关注以下几个主题: 线性空间和拓扑结构:泛函分析考虑的空间往往是无穷维的,因此需要引入合适的拓扑结构,如度量、拓扑和赋范等概念。这些结构可以描述空间中的收敛性、连续性和紧致性等性质。 范数和内积:泛函分析中常常考虑具有范数或内积的线性空间,这些结构允许量化向量之间的距离或角度。范数引入了向量的长度概念,内积则引入了向量之间的夹角和正交性概念。 连续性和收敛性:泛函分析研究函数序列或算子序列的极限性质,如点态收敛、均匀收敛和弱收敛等。这方面的研究有助于揭示函数空间中的内在结构和重要特性。 函数空间和算子理论:泛函分析广泛应用于函数空间和算子的研究。函数空间是一类函数的集合,常见的如Lebesgue空间和Sobolev空间,它们具有重要的数学和物理背景。算子理论研究线性算子和它们的性质,如线性算子的谱理论和算子方程等。 泛函分析在数学和应用数学中具有广泛的应用,如在微分方程、泛函微分方程、量子力学和信号处理等领域。

2023-10-04

数学建模与matlab

这本书介绍了数学建模中常用的一些算法,书中有对应的matlab代码,供大家学习,感谢大家支持!

2023-10-04

粒子群算法优化bp神经网络

本问用采用粒子群算法优化bp神经网络,采用matlab编程。给出了优化之后的效果图。

2023-03-24

粒子群算法优化灰色预测模型(matlab实现)

采用粒子群算法优化GM(1,1)灰色预测模型,给出了预测结果。

2023-03-24

粒子群算法优化最小二乘支持向量

采用粒子群算法优化最小二乘支持向量

2023-03-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除