引言
大数据的运算在C++的竞赛环境里没有像JAVA的 BigInteger类自动处理 也没有int类型自动扩展精度 所以在这种情况下 C++选手熟练掌握大数的运算至关重要 接下来由我来提供我的大数四则运算的算法模板
四则运算模板
1. 高精度 大数加法
#include<iostream>
#include<vector>
using namespace std;
//C=A+B
vector<int> Add(vector<int>& A, vector<int>& B) {
vector<int> C;
int t = 0;//进位数 C[i] = A[i] + B[i] + t
for (int i = 0; i < A.size() || i < B.size(); i++) {
if (i < A.size()) t += A[i];
if (i < B.size()) t += B[i];
C.push_back(t % 10);//直接加和给t 无论t是否大于9 都只取最后一位
t /= 10;//若大于9 则进位 取整除10 作为进位数 进行下一次循环的加和
}
if (t) C.push_back(1);//若最高位时进位 则在C末尾加1 代表进位
return C;
}
int main() {
vector<int> A, B;
string a, b;
cin >> a >> b;//a="123456"
for (int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0'); //注意 倒叙存储 方便最高位进位
for (int j = b.size() - 1; j >= 0; j--) B.push_back(b[j] - '0');
auto C = Add(A, B); //auto: 自动识别类型
for (int i = C.size() - 1; i >= 0; i--) cout << C[i];
return 0;
}
2. 高精度 大数减法
#include<iostream>
#include<vector>
using namespace std;
//判断是否A>=B
bool cmp(vector<int>& A, vector<int>& B) {
if (A.size() != B.size()) return A.size() > B.size();//如果A.size() > B.size(),则A>=B,返回true
for (int i = A.size() - 1; i >= 0; i--) {
if (A[i] != B[i])
return A[i] > B[i];//如果A[i]!=B[i],则A[i]>B[i],返回true
}
return true;//如果A==B,则true
}
vector<int> Sub(vector<int>& A, vector<int>& B) {
vector<int> C; //C=A-B-t
for (int i = 0, t = 0; i < A.size(); i++) {//从低位开始计算
t = A[i] - t;//t表示借位,初始为0。对于每一位,先减去借位
if (i < B.size()) t -= B[i]; //如果B还有位数则减去B[i](注意这里B可能比A短,所以要判断)
C.push_back((t + 10) % 10);// 这样即使t为负数也能得到正确的当前位
if (t < 0) t = 1;//如果t<0,则借位为1,否则为0。
else t = 0;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;//去除前导零(注意:因为存储是逆序,所以最后面的0实际上是高位的0,需要去掉)
}
int main() {
vector<int> A, B;
string a, b;
cin >> a >> b;//a="123456"
for (int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
for (int j = b.size() - 1; j >= 0; j--) B.push_back(b[j] - '0');
if (cmp(A, B)) {
auto C = Sub(A, B);
for (int i = C.size() - 1; i >= 0; i--) cout << C[i];
}
else {//如果A<B,则A-B=-(B-A),所以先计算B-A,然后输出负号
auto C = Sub(B, A);
cout << '-';
for (int i = C.size() - 1; i >= 0; i--) cout << C[i];
}
return 0;
}
3. 高精度 大数乘法
#include<iostream>
#include<vector>
using namespace std;
vector<int> Mul(vector<int>& A, int b) {
vector<int> C; int t = 0;
for (int i = 0; i < A.size() || t; i++) { //超过size的时候 t不为0 则继续进位
if (i < A.size()) t += A[i] * b;//在A的第i位乘以b
C.push_back(t % 10);//取余10,得到当前位的结果
t /= 10;//更新进位
}
while (C.size() > 1 && C.back() == 0) C.pop_back(); //前导零处理(输出单个0)
return C;
}
int main() {
string a;
vector<int> A; int b;
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
auto C = Mul(A, b);
for (int i = C.size() - 1; i >= 0; i--) cout << C[i];
return 0;
}
4. 高精度 大数除法
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> Div(vector<int>& A, int b, int& r) {
vector<int> C; r = 0;
for (int i = A.size() - 1; i >= 0; i--) {//从最高位开始
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}//反转后可用 pop_back() 高效去零 复杂度为 O(1)
reverse(C.begin(), C.end());//顺序的话删 除头部元素需移动整个数组,时间复杂度 O(n)
while (C.size() > 1 && C.back() == 0) C.pop_back();//去除前导0
return C;
}
int main() {
string a;
vector<int> A; int b;
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
int r;
auto C = Div(A, b, r);
for (int i = C.size() - 1; i >= 0; i--) cout << C[i];
cout << endl << r << endl;
return 0;
}