思路:
动态规划. 如果s字符串的长度是len的话, 就建立一个len * len的boolean矩阵isPalindrome, isPalindrome[i][j]表示从s[i]到s[j]的子串是不是回文串. 再拿一个len长度的int型数组记录从s[0]到s[i]的子串最少需要切几次. 然后初始化, 每个字符自己都是一个回文子串, 然后前n个字符最多需要切n次.
然后就是重要的DP环节了, 外循环从1开始遍历到s的尾部, 内循环从i开始遍历到s的头部, 来找从i开始到s头部的所有回文串, 如果是回文串, 就看j是不是到头了, 如果到头了, 说明s[0]到s[i]一次都不需要切, 就赋值为0, 如果没到头, 就看当前的cut[i]小, 还是咱们现在切一刀, 然后看s[0]到s[j - 1]的子串切得总次数加上现在切得一刀小.
int minCut(string s) {
int len = s.length();
if (! len) return 0;
bool isPalindrome[len][len] = {0};
int cut[len] = {0};
for (int i = 0; i < len; i++) {
isPalindrome[i][i] = true;
cut[i] = i;
}
for (int i = 1; i < len; i++) {
for (int j = i; j >= 0; j--) {
if (s[i] == s[j] && (i - j < 2 || isPalindrome[i - 1][j + 1])) {
if (! j) cut[i] = 0;
else {
isPalindrome[i][j] = true;
cut[i] = min(cut[i], cut[j - 1] + 1);
}
}
}
}
return cut[len - 1];
}