Improving Deep Neural Networks
Hiker1995
这个作者很懒,什么都没留下…
展开
-
Improving Deep Neural Networks - Week1
在接下来的几次笔记中,我们将对第二门课《Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization》进行笔记总结和整理。我们在第一门课中已经学习了如何建立一个神经网络,或者浅层的,或者深度的。而这第二门课,我们将着重讨论和研究如何优化神经网络模型,例如调整超参数,提高算法运行速度等等。...转载 2018-05-09 15:26:18 · 342 阅读 · 0 评论 -
Improving Deep Neural Networks - Week2
Week2 优化算法 上节课我们主要介绍了如何建立一个实用的深度学习神经网络。包括Train/Dev/Test sets的比例选择,Bias和Variance的概念和区别:Bias对应欠拟合,Variance对应过拟合。接着,我们介绍了防止过拟合的两种方法:L2 regularization和Dropout。然后,介绍了如何进行规范化输入,以加快梯度下降速度和精度。然...转载 2018-05-09 15:41:55 · 270 阅读 · 0 评论 -
Improving Deep Neural Networks - Week3
Week3 超参数调试、Batch正则化和编程框架上节课我们主要介绍了深度神经网络的优化算法。包括对原始数据集进行分割,使用mini-batch gradient descent。然后介绍了指数加权平均(Exponentially weighted averages)的概念以及偏移校正(bias correction)方法。接着,我们着重介绍了三种常用的加速神经网络学习速度的三种算法:动量梯度下...转载 2018-05-09 15:52:44 · 268 阅读 · 0 评论