强化学习
Hiking_Yu
这个作者很懒,什么都没留下…
展开
-
强化学习和量化交易-你选对了吗?
强化学习是一个非常优秀的机器学习的一种方式,不但AlphaGo使用了,很多量化交易系统也是使用此学习方式。强化学习中的智能体agent就是一个综合状态state、行动action,奖励reward来围绕环境env的一个系统,根基行动对环境的影响确定每步step的环境env对action奖励reward或者在每个回合episode中确定reward来计算agent的行动函数的一个过程。在对强化学...原创 2020-04-06 12:23:57 · 1399 阅读 · 0 评论 -
强化学习原理(刘建平)-目录
强化学习(一)模型基础强化学习(二)马尔科夫决策过程(MDP)强化学习(三)用动态规划(DP)求解强化学习(四)用蒙特卡罗法(MC)求解强化学习(五)用时序差分法(TD)求解强化学习(六)时序差分在线控制算法SARSA强化学习(七)时序差分离线控制算法Q-Learning强化学习(八)价值函数的近似表示与Deep Q-Learning强化学习(九)Deep Q-Learning进阶...原创 2020-02-13 22:57:10 · 829 阅读 · 0 评论 -
OpenAI Gym--杂项
杂在这里,社区提供了一堆工具,库,api,教程,资源等,以为健身房生态系统增值。OpenAIGym.jl适用于Julia语言的OpenAI Gym便利包装 /tbreloff/OpenAIGym.jl原创 2020-02-10 16:06:21 · 213 阅读 · 0 评论 -
OpenAI Gym--智能体
Agents 智能体“智能体”描述了针对健身房中的环境运行RL算法的方法。智能体可以包含算法本身,也可以简单地提供算法与健身房环境之间的集成。RandomAgent 随机智能体位于此仓库中的样本智能体gym/examples/agents/random_agent.py。这个简单的智能体利用环境的能力来产生随机的有效动作,并且针对每个步骤都这样做。cem.py位于此存储库中的通用交叉熵智...原创 2020-02-10 16:05:04 · 681 阅读 · 0 评论 -
OpenAI Gym--包装器
装饰器Space Wrappers装饰器 改变观察和/或行动空间。包含Discretize (制作连续空间的离散版本)Flatten (将所有操作/观察合并为一个维度)Rescale (重新缩放连续空格的值范围.在此处了解更多信息https://github.com/ngc92/space-wrappersAtari Games的实用程序包装基线存储库包含在进行Atari实验时...原创 2020-02-10 16:03:33 · 385 阅读 · 0 评论 -
OpenAI Gym--创建新环境
如何为健身房创建新环境创建一个名为gym-foo的新存储库,它也应该是一个PIP包。一个很好的例子是https://github.com/openai/gym-soccer。它至少应具有以下文件:gym-foo/ README.md setup.py gym_foo/ __init__.py envs/ __init__.py ...原创 2020-02-10 16:01:10 · 1051 阅读 · 2 评论 -
OpenAI Gym中文翻译-目录
目录环境 列出了可以在其上运行算法的Gym环境。创建新环境 列出了可以在其上运行算法的Gym环境。装饰器 通用包装的列出的环境。它们可以对代理与环境之间交换的数据执行预处理/后处理。智能体 包含与Gym环境兼容的代理列表。代理有助于针对环境运行算法。其他 是其他增值工具和实用程序的集合。这些内容可以是任何东西,从一个便捷的lib到视频教程或新的语言绑定。...原创 2020-02-10 15:54:08 · 886 阅读 · 0 评论 -
OpenAI Gym--环境
Environments这是Gym环境的列表,包括与Gym打包在一起的环境,官方OpenAI环境和第三方环境。有关创建自己的环境的信息,请参见创建自己的环境。Included Environments每个环境组的代码都位于其自己的子目录gym/envs. 每个任务的规范在gym/envs/__init__.py.两者都值得浏览。Algorithmic这些是各种各样的算法任务,例如学习复...原创 2020-02-10 15:58:33 · 5007 阅读 · 0 评论