【人工智能基础04】线性模型(练习题)

1-3. 概念题

在这里插入图片描述

 

4. 如何限制空间

在这里插入图片描述

1.约束版本

对于线性回归问题,限定参数向量 w 的大小,即 ||w||₂ ≤ c。这里 c 是一个预先设定的常数,用于限制 w 的长度。这个约束条件直接对参数向量的长度进行了限制,确保其不会过大或过小。
 
2.无约束版本

min ⁡ ( 1 2 N ∣ ∣ X w − y ∣ ∣ 2 2 + λ 2 ∣ ∣ w ∣ ∣ 2 2 ) \min(\frac{1}{2N}||Xw - y||_2^2+\frac{\lambda}{2}||w||_2^2) min2N1∣∣Xwy22+2λ∣∣w22

N 是样本数量,X 是输入数据矩阵,w 是参数向量,y 是目标值向量。这个目标函数由两部分组成:第一部分是均方误差项,表示模型对数据的拟合程度;第二部分是正则化项,通过惩罚参数向量 w 的长度来防止过拟合。参数 λ 用于控制正则化的强度。
 
通过调整 λ 的值,可以在拟合数据和限制参数大小之间进行权衡。

  • λ 较大时,正则化项的作用更强,参数向量 w会更趋向于零向量,从而防止过拟合
  • λ 较小时,正则化项的作用较弱,模型更注重拟合数据

例如,在实际应用中,可以通过交叉验证等方法来选择合适的 λ 值,以获得最佳的模型性能。

 

5. 梯度下降的计算

在这里插入图片描述

在这里插入图片描述

 

6. 随机梯度下降

在这里插入图片描述

  1. 批较小时的影响
    • 随机梯度噪声大: 批大小很小时,每次用于计算梯度的样本少,导致计算出的随机梯度与真实梯度偏差大,噪声大。例如在图像分类任务中,小批大小可能使梯度在不同方向剧烈波动,影响模型向最优解前进。
    • 不易收敛: 由于随机梯度噪声大,模型参数更新不稳定,难以收敛到较好的解。在回归问题中,模型可能在最优解附近振荡,且小批大小可能使模型陷入局部最优解。
  2. 批较大时的影响
    • 运行速度慢:批大小较大时&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值